• Title/Summary/Keyword: CSL

Search Result 258, Processing Time 0.023 seconds

Study of Material Behavior of Concretes Using CSL Model (CSL 모델을 이용한 콘크리트의 재료거동 연구)

  • Zi, Goang-Seup;Jung, Jin-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.377-380
    • /
    • 2006
  • The recently developed confinement-shear lattice model is reviewed. The procedure for generating aggregates in a given specimen and the constitutive model for on aggregate-cement strut are shown. It is suggested that the model can easily be extended for early age concretes and fiber reinforced concretes. The state-of-art of the extension and the general procedure of the extension are given in this paper.

  • PDF

Constitutive Expression of Bacillus stearothermophilus CGTase in Bacillus subtilis. (Bacillus subtilis에서 Bacillus stearothermophilus CGTase의 구성적 발현)

  • 허선연;김중균;권현주;김병우;김동은;남수완
    • Journal of Life Science
    • /
    • v.14 no.3
    • /
    • pp.391-395
    • /
    • 2004
  • To overproduce the cyclodextrin glucanotransferase(CGTase) of Bacillus stearothermophilus NO2 in B. subtilis, the pJH-CGTl plasmid (8.14 kb) was constructed, in which the ORF of CGTase gene could be transcribed by strong constitutive promoter, P$\_$JH/. To overproduce CGTase from a recombinant B. subtilis, the effect of media on the cell growth and expression level of CGTase were investigated with various media (LB, 2${\times}$LB, 5% molasses+2% CSL, CS, LBG) in the flask culture. Among them, [5% molasses+2% CSL] medium revealed the maximum expression level of CGTase with 1.8 unit/$m\ell$ at 9 hr culture. In the batch culture on [10% molasses+5% corn steep liquor] medium the expression level of CGTase, the secretion efficiency, and plasmid stability were about 4.2 unit/$m\ell$, 90% and 90%, respectively, at 30 hr culture. The cell growth and expression level in the fermenter culture with the industrial molasses medium were increased by 2-folds over the flask culture.

Application of Non-Destructive Testing Techniques to the Evaluation of Integrity of Drilled Shaft (비파괴시험을 이용한 현장타설말뚝의 건전도 평가에 관한 연구)

  • Chae, Jong-Hoon;Yu, Jae-Myung;Kim, Dae-Kyu;Lee, Woo-Jin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.4
    • /
    • pp.5-14
    • /
    • 2001
  • The NDT(Non-Destructive Testing) technique, detecting defects without damaging foundations, has, lately, been a matter of concern. In this study, the applicability of the borehole methods(CSL, CT, PS) and the surface reflection methods(SE, IR) to the evaluation of integrity of drilled shaft was investigated through field test. Ten drilled shafts, 0.4 m in diameter and 7.0 m long each, were constructed, one shaft with no defect and nine shafts intentionally with the combination of the common defects such as soft bottom, necking, bulging, cave-in, and/or weak concrete. Analysing each NDP test result on the constructed drilled shafts, an optimum combination of the NDP methods as well as the applicability of each NDP method to detecting defects of drilled shaft have been investigated.

  • PDF

Culture Condition for the Production of Bacterial Cellulose with Gluconacetobacter persimmonus KJ145 (Giuconacetobacter persimmonus KJ145를 이용한 Bacterial Cellulose 생산조건)

  • Lee, Oh-Seuk;Jang, Se-Young;Jeong, Yong-Jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.4
    • /
    • pp.572-577
    • /
    • 2002
  • We investigated the optimal condition for production of bacterial cellulose with Gluconacetobacter persimmonus KJ145. For bacterial cellulose production, optimal medium composition and culture conditions were conducted to determine. Apple juice (10$^{\circ}$Brix) medium was suitable than Hestrin & Schramm medium which is generally used for the bacterial cellulose production. When 1% pyruvate as carbon source was added to apple juice, bacterial cellulose production rose to high level. The effect of various nitrogen sources was investigated: CSL was found to be essential to high cellulose yields and the optimal CSL concentration was 10%. Optimal temperature and culture time for the bacterial cellulose production was 35$^{\circ}C$ and 16 days, respectively At the optimal condition Gluconacetobacter persimmonus KJ145 produced 8.96g/L of bacterial cellulose (dry weight), which was much higher than reported values.

Monte Carlo Studies on an Amorphous Silicon (a-Si:H) Digital X-Ray Imaging Device (무정형 실리콘(a-Si : H) 디지털 X-선 영상기기의 개발을 위한 Monte Carlo 컴퓨터 모의실험연구)

  • 이형구;신경섭
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.225-232
    • /
    • 1998
  • Results of Monte Carlo simulations on amorphous silicon based x-ray imaging arrays are described. In order to investigate the characteristics of amorphous silicon x-ray imaging devices and to provide the optimum design parameter, Monte Carlo simulations were performed. Monte Carlo simulation codes for our purpose were developed and various combinations of x-ray peak voltages, aluminum filter thicknesses, CsI(TI) thicknesses, and amorphous silicon photodiode pixel sizes were tested in connection with detection efficiency and spatial resolution of the amorphous silicon based x-ray imager. With usual Csl(TI) thickness of 300${\mu}{\textrm}{m}$-500${\mu}{\textrm}{m}$, detection efficiency was in the range of 70%-95% and energy absorption efficiency was in the range of 40%-70% for 60kVp-120kVp x-ray. From the simulations it was found that amorphous silicon pixel size and Csl(TI) thickness were the most important parameters which determine the resolution of the imager. By use of our simulation results we could provide proper combinations of Csl(TI) thicknesses and pixels sizes for optimum sensitivity and resolution.

  • PDF

Statistical Optimization of Medium Composition for Bacterial Cellulose Production by Gluconacetobacter hansenii UAC09 Using Coffee Cherry Husk Extract - an Agro-Industry Waste

  • Rani, Mahadevaswamy Usha;Rastogi, Navin K.;Anu Appaiah, K.A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.7
    • /
    • pp.739-745
    • /
    • 2011
  • During the production of grape wine, the formation of thick leathery pellicle/bacterial cellulose (BC) at the airliquid interface was due to the bacterium, which was isolated and identified as Gluconacetobacter hansenii UAC09. Cultural conditions for bacterial cellulose production from G. hansenii UAC09 were optimized by central composite rotatable experimental design. To economize the BC production, coffee cherry husk (CCH) extract and corn steep liquor (CSL) were used as less expensive sources of carbon and nitrogen, respectively. CCH and CSL are byproducts from the coffee processing and starch processing industry, respectively. The interactions between pH (4.5-8.5), CSL (2-10%), alcohol (0.5-2%), acetic acid (0.5-2%), and water dilution rate to CCH ratio (1:1 to 1:5) were studied using response surface methodology. The optimum conditions for maximum BC production were pH (6.64), CSL (10%), alcohol (0.5%), acetic acid (1.13%), and water to CCH ratio (1:1). After 2 weeks of fermentation, the amount of BC produced was 6.24 g/l. This yield was comparable to the predicted value of 6.09 g/l. This is the first report on the optimization of the fermentation medium by RSM using CCH extract as the carbon source for BC production by G. hansenii UAC09.

Logging for a Stone Column Using Crosshole Seismic Testing (크로스홀 탄성파 시험을 이용한 쇄석말뚝의 검측)

  • Kim, Hak-Sung;Mok, Young-Jin
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.139-145
    • /
    • 2010
  • An integrity testing for stone columns was attempted using crosshole S-wave logging. The method is conceptionally quite similar to the crosshole sonic logging (CSL) for drilled piers. The critical difference in the logging is the use of S-wave rather than P-wave, which is used in CSL, because swave is the only wave sensing the stiffness of slower unbounded materials than water. An electro-mechanical source, which can generate reversed Swave signals, was utilized in the logging. The stone column was delineated using the S-wave travel times across the stone column, the S-wave velocity profile of the crushed stone($V_{cs}$-profile) and that of surrounding soil($V_s$-profile). In the calculation of $V_{cs}$-profile of the crushed stone, its friction angle and Ko (coefficient of lateral earth pressure at rest) are recommended to be used. The calculation of the column diameter is not much affected by the values of friction angle and Ko.

Physiology and Gene Expression Analysis of Tomato (Solanum lycopersicum L.) Exposed to Combined-Virus and Drought Stresses

  • Samra Mirzayeva;Irada Huseynova;Canan Yuksel Ozmen;Ali Ergul
    • The Plant Pathology Journal
    • /
    • v.39 no.5
    • /
    • pp.466-485
    • /
    • 2023
  • Crop productivity can be obstructed by various biotic and abiotic stresses and thus these stresses are a threat to universal food security. The information on the use of viruses providing efficacy to plants facing growth challenges owing to stress is lacking. The role of induction of pathogen-related genes by microbes is also colossal in drought-endurance acquisition. Studies put forward the importance of viruses as sustainable means for defending plants against dual stress. A fundamental part of research focuses on a positive interplay between viruses and plants. Notably, the tomato yellow leaf curl virus (TYLCV) and tomato chlorosis virus (ToCV) possess the capacity to safeguard tomato host plants against severe drought conditions. This study aims to explore the combined effects of TYLCV, ToCV, and drought stress on two tomato cultivars, Money Maker (MK, UK) and Shalala (SH, Azerbaijan). The expression of pathogen-related four cellulose synthase gene families (CesA/Csl) which have been implicated in drought and virus resistance based on gene expression analysis, was assessed using the quantitative real-time polymerase chain reaction method. The molecular tests revealed significant upregulation of Ces-A2, Csl-D3,2, and Csl-D3,1 genes in TYLCV and ToCV-infected tomato plants. CesA/Csl genes, responsible for biosynthesis within the MK and SH tomato cultivars, play a role in defending against TYLCV and ToCV. Additionally, physiological parameters such as "relative water content," "specific leaf weight," "leaf area," and "dry biomass" were measured in dual-stressed tomatoes. Using these features, it might be possible to cultivate TYLCV-resistant plants during seasons characterized by water scarcity.

Optimization of 4H-SiC Vertical MOSFET by Current Spreading Layer and Doping Level of Epilayer (Current Spreading Layer와 에피 영역 도핑 농도에 따른 4H-SiC Vertical MOSFET 항복 전압 최적화)

  • Ahn, Jung-Joon;Moon, Kyoung-Sook;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.10
    • /
    • pp.767-770
    • /
    • 2010
  • In this work, we investigated the static characteristics of 4H-SiC vertical metal-oxidesemiconductor field effect transistors (VMOSFETs) by adjusting the doping level of n-epilayer and the effect of a current spreading layer (CSL), which was inserted below the p-base region with highly doped n+ state ($5{\times}10^{17}cm^{-3}$). The structure of SiC VMOSFET was designed by using a 2-dimensional device simulator (ATLAS, Silvaco Inc.). By varying the n-epilayer doping concentration from $1{\times}10^{16}cm^{-3}$ to $1{\times}10^{17}cm^{-3}$, we investigated the static characteristics of SiC VMOSFETs such as blocking voltages and on-resistances. We found that CSL helps distribute the electron flow more uniformly, minimizing current crowding at the top of the drift region and reducing the drift layer resistance. For that reason, silicon carbide VMOSFET structures of highly intensified blocking voltages with good figures of merit can be achieved by adjusting CSL and doping level of n-epilayer.

High-Cell-Density Fed-Batch Culture of Saccharomyces cerevisiae KV-25 Using Molasses and Corn Steep Liquor

  • Vu, Van Hanh;Kim, Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.12
    • /
    • pp.1603-1611
    • /
    • 2009
  • High-cell-density cultivation of yeast was investigated using the agricultural waste products corn steep liquor (CSL) and molasses. The Saccharomyces cerevisiae KV-25 cell mass was significantly dependent on the ratio between C and N sources. The concentrations of molasses and CSL in the culture medium were statistically optimized at 10.25% (v/v) and 16.87% (v/v), respectively, by response surface methodology (RSM). Batch culture in a 5-l stirred tank reactor using the optimized medium resulted in a cell mass production of 36.5 g/l. In the fed-batch culture, the feed phase was preceded by a batch phase using the optimized medium, and a very high dried-cell-mass yield of 187.63 g/l was successfully attained by feeding a mixture of 20% (v/v) molasses and 80% (v/v) CSL at a rate of 22 ml/h. In this system, the production of cell mass depended mainly on the agitation speed, the composition of the feed medium, and the glucose level in the medium, but only slightly on the aeration rate.