• Title/Summary/Keyword: CSI reliability

Search Result 24, Processing Time 0.02 seconds

A New Compressive Feedback Scheme Based on Distributed Compressed Sensing for Time-Correlated MIMO Channel

  • Li, Yongjie;Song, Rongfang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.2
    • /
    • pp.580-592
    • /
    • 2012
  • In this paper, a new compressive feedback (CF) scheme based on distributed compressed sensing (DCS) for time-corrected MIMO channel is proposed. First, the channel state information (CSI) is approximated by using a subspace matrix, then, the approximated CSI is compressed using a compressive matrix. At the base station, the approximated CSI can be robust recovered with simultaneous orthogonal matching pursuit (SOMP) algorithm by using forgone CSIs. Simulation results show our proposed DCS-CF method can improve the reliability of system without creating a large performance loss.

Application of Percentile Speed for Appraisal of Road Section with Recurring Congestion (상습 지체구간 선정을 위한 Percentile 속도의 활용)

  • Kim, Hyung Gon;Lee, Ki Young;Lee, Soong Bong;Chang, Myungsoon
    • International Journal of Highway Engineering
    • /
    • v.16 no.5
    • /
    • pp.165-171
    • /
    • 2014
  • PURPOSES : The objective of this study is to find Percentile Speed($V_p$) for Appraisal of Road Section with Recurring Congestion. METHODS : Percentile Speed($V_p$) is determined by correlation analysis of CSI that proposed existing literature. and CSI(Consistency Service Index) is a index that subtract service fail frequency from 100 points, and service fail is defined as traffic situation is driving less than 80kph speed. In this study, We analyzed the highest correlation percentile speed associated with CSI. This speed is chosen as a delay decision speed. In order to verifying reliability, it performed a comparison with the previous method. RESULTS : As a result, 30 percentile speed($V_{30}$) was decided as index speed for judgement of recurring congestion section, and through comparison with existing methods, we demonstrated that 30 percentile speed can be useful for judgement of recurring congestion section. CONCLUSIONS : This method to Determine recurring congestion section using the percentile speed($V_{30}$) was proposed for the first time in this paper. This method can be applicated more quickly and easily than existing method for determining of recurring delay section.

Deep Learning-based Indoor Positioning System Using CSI (채널 상태 정보를 이용한 딥 러닝 기반 실내 위치 확인 시스템)

  • Zhang, Zhongfeng;Choi, Seungwon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.4
    • /
    • pp.1-7
    • /
    • 2020
  • Over the past few years, Wi-Fi signal based indoor positioning system (IPS) has been researched extensively because of its low expenses of infrastructure deployment. There are two major aspects of location-related information contained in Wi-Fi signals. One is channel state information (CSI), and one is received signal strength indicator (RSSI). Compared to the RSSI, the CSI has been widely utilized because it is able to reveal fine-grained information related to locations. However, the conventional IPS that employs a single access point (AP) does not exhibit decent performance especially in the environment of non-line-of-sight (NLOS) situations due to the reliability degeneration of signals caused by multipath fading effect. In order to address this problem, in this paper, we propose a novel method that utilizes multiple APs instead of a single AP to enhance the robustness of the IPS. In our proposed method, a hybrid neural network is applied to the CSIs collected from multiple APs. By relying more on the fingerprint constructed by the CSI collected from an AP that is less affected by the NLOS, we find that the performance of the IPS is significantly improved.

Developing Measurements of University Satisfaction using Public Customer Satisfaction Index (공공기관 고객만족지수를 이용한 대학의 고객만족 측정도구 개발)

  • Jung, Bok-Ju;Lee, Sang-Chul;Im, Kwang Hyuk
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.12
    • /
    • pp.25-34
    • /
    • 2018
  • With the higher competition of university environment, universities has been adapted Customer Satisfaction Index (CSI). However, the problem of CSI focuses on score and ranking announcement. In public sectors, PCSI model is used because of increasing its strategic utilization by providing diagnosis of the phenomenon and direction for future improvement through causal model analysis. The purpose of this research is to develop a measurements of university satisfaction using PCSI. This research demonstrates validity and reliability of PCSI using test-retest method using multi-group confirmatory factor analysis. The results of this research indicate that the reliability and validity of the PCSI model is verified. Service product quality, service delivery quality, environment quality and social quality have positive effects on customer satisfaction. In turn, customer satisfaction have positve effects on university performance and social performance. In conclusion, service quality, PCSI, and service performance are clarified to be appropriate components of the satisfaction survey. These results can be used to measure the satisfaction level of education at actual universities. It is expected that practical basic data can be obtained to improve the quality of university education.

Performance Analysis of Energy-Efficient Secure Transmission for Wireless Powered Cooperative Networks with Imperfect CSI

  • Yajun Zhang;Jun Wu;Bing Wang;Hongkai Wang;Xiaohui Shang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.9
    • /
    • pp.2399-2418
    • /
    • 2023
  • The paper focuses on investigating secure transmission in wireless powered communication networks (WPCN) that involve multiple energy-constrained relays and one energy-constrained source. The energy is harvested from a power beacon (PB) while operating in the presence of a passive eavesdropper. The study primarily aims to achieve energy-efficient secure communications by examining the impact of channel estimation on the secrecy performance of WPCN under both perfect and imperfect CSI scenarios. To obtain practical insights on improving security and energy efficiency, we propose closed-form expressions for secrecy outage probability (SOP) under the linear energy harvesting (LEH) model of WPCN. Furthermore, we suggest a search method to optimize the secure energy efficiency (SEE) with limited power from PB. The research emphasizes the significance of channel estimation in maintaining the desired performance levels in WPCN in real-world applications. The theoretical results are validated through simulations to ensure their accuracy and reliability.

Development of Customer Satisfaction Index (CSI) Model for Pakistan

  • HAMAYUN, Khadija;HAFEEZ, Shakir
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.7
    • /
    • pp.153-171
    • /
    • 2022
  • To measure economic performance, customer satisfaction indices are constructed. This study proposes an index for banking and telecom, a significant evaluative system for comparing and enhancing customer satisfaction across the industries. The study suggests and examines amendments and improvements to the prior indices and incorporates ignored indicators to propose a punier index for Pakistan. The study is a pioneer in integrating online and offline indices into a single comprehensive model. The study is enriched by the Theory of Reasoned Action and Technological Acceptance Model. A sample of 320 respondents was used. The sample was divided based on gender and marital status. To authenticate the theoretical model, PLS-SEM was applied. We discovered nine latent variables that define customer satisfaction and conclude that a single model can be utilized for e-commerce enterprises as well. The index scores are comparable to the American index for banking and the Turkish index for telecom. Multi-group analysis (MGA) was used to comprehend the differences among the groups. This reveals that customization, design, reliability, and responsiveness induce satisfaction in telecom male and married customers. For the banking industry, the difference exists in complaint handling, customization, corporate image, perceived price, reliability, responsiveness, sentiments, convenience, and security to satisfaction links, image and complaint handling to loyalty links.

Design and Implementation of Modified Current Source Based Hybrid DC - DC Converters for Electric Vehicle Applications

  • Selvaganapathi, S.;Senthilkumar, A.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.2
    • /
    • pp.57-68
    • /
    • 2016
  • In this study, we present the modern hybrid system based power generation for electric vehicle applications. We describe the hybrid structure of modified current source based DC - DC converters used to extract the maximum power from Photovoltaic (PV) and Fuel Cell system. Due to reduced dc-link capacitor requirement and higher reliability, the current source inverters (CSI) better compared to the voltage source based inverter. The novel control strategy includes Distributed Maximum Power Point Tracking (DMPPT) for photovoltaic (PV) and fuel cell power generation system. The proposed DC - DC converters have been analyzed in both buck and boost mode of operation under duty cycle 0.5>d, 0.5<d<1 and 0.5<d for capable electric vehicle applications. The proposed topology benefits include one common DC-AC inverter that interposes the generated power to supply the charge for the sharing of load in a system of hybrid supply with photovoltaic panels and fuel cell PEM. An improved control of Direct Torque and Flux Control (DTFC) based induction motor fed by current source converters for electric vehicle.In order to achieve better performance in terms of speed, power and miles per gallon for the expert, to accepting high regenerative braking current as well as persistent high dynamics driving performance is required. A simulation model for the hybrid power generation system based electric vehicle has been developed by using MATLAB/Simulink. The Direct Torque and Flux Control (DTFC) is planned using Xilinx ISE software tool in addition to a Modelsim 6.3 software tool that is used for simulation purposes. The FPGA based pulse generation is used to control the induction motor for electric vehicle applications. FPGA has been implemented, in order to verify the minimal error between the simulation results of MATLAB/Simulink and experimental results.

Performance Analysis of Collaborative Wideband Sensing Scheme based on Energy Detection with User Selection for Cognitive Radio (에너지검출 기반 협력 광대역 센싱에서 사용자 선택에 따른 센싱 성능 분석)

  • Lee, Mi-Sun;Kim, Yoon-Hyun;Kim, Jin-Young
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.2
    • /
    • pp.72-77
    • /
    • 2011
  • Spectrum sensing is a critical functionality of CR network; it allow secondary user to detect spectral holes and to opportunistically use under-utilized frequency bands without causing harmful interference to primary use. Recently, wideband service has been increase for processing abundance of data traffic. So CR network needs a realizable implementation design of spectrum sensing for wideband. To get high resolution performance of wideband sensing must precede algorithm processing for reliability signal detection. By the way, the performance of spectrum sensing can be degraded due to fading and shadowing. In order to overcome this problem, we propose system model of wideband sensing scheme on energy detected collaborative technique. we divide wideband into narrowbands and use narrowbands to detect signal excepting some narrowbands including bad channel through the CSI. And we simulate and analyze in terms of detection probability with various SNR.

New SNR Estimation Algorithm using Preamble and Performance Analysis (프리앰블을 이용한 새로운 SNR 추정 알고리즘 제안 및 성능 분석)

  • Seo, Chang-Woo;Yoon, Gil-Sang;Portugal, Sherlie;Hwang, In-Tae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.3
    • /
    • pp.6-12
    • /
    • 2011
  • The fast growing of the number of users requires the development of reliable communication systems able to provide higher data rates. In order to meet those requirements, techniques such as Multiple Input Multiple Out (MIMO) and Orthogonal Frequency Division multiplexing (OFDM) have been developed in the recent years. In order to combine the benefits of both techniques, the research activity is currently focused on MIMO-OFDM systems. In addition, for a fast wireless channel environment, the data rate and reliability can be optimized by setting the modulation and coding adaptively according to the channel conditions; and using sub-carrier frequency, and power allocation techniques. Depending on how accurate the feedback-based system obtain the channel state information (CSI) and feed it back to the transmitter without delay, the overall system performance would be poor or optimal. In this paper, we propose a Signal to Noise Ratio (SNR) estimation algorithm where the preamble is known for both sides of the transciever. Through simulations made over several channel environments, we prove that our proposed SNR estimation algorithm is more accurate compared with the traditional SNR estimation.

Throughput Performance analysis of AMC based on New SNR Estimation Algorithm using Preamble (프리앰블을 이용한 새로운 SNR 추정 알고리즘 기반의 AMC 기법의 전송률 성능 분석)

  • Seo, Chang-Woo;Portugal, Sherlie;Hwang, In-Tae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.4
    • /
    • pp.6-14
    • /
    • 2011
  • The fast growing of the number of users requires the development of reliable communication systems able to provide higher data rates. In order to meet those requirements, techniques such as Multiple Input Multiple Out (MIMO) and Orthogonal Frequency Division multiplexing (OFDM) have been developed in the recent years. In order to combine the benefits of both techniques, the research activity is currently focused on MIMO-OFDM systems. In addition, for a fast wireless channel environment, the data rate and reliability can be optimized by setting the modulation and coding adaptively according to the channel conditions; and using sub-carrier frequency, and power allocation techniques. Depending on how accurate the feedback-based system obtain the channel state information (CSI) and feed it back to the transmitter without delay, the overall system performance would be poor or optimal. In this paper, we propose a Signal to Noise Ratio (SNR) estimation algorithm where the preamble is known for both sides of the transciever. Through simulations made over several channel environments, we prove that our proposed SNR estimation algorithm is more accurate compared with the traditional SNR estimation. Also, We applied AMC on several channel environments using the parameters of IEEE 802.11n, and compared the Throughput performance when using each of the different SNR Estimation Algorithms. The results obtained in the simulation confirm that the proposed algorithm produces the highest Throughput performance.