• Title/Summary/Keyword: CSA grip

Search Result 4, Processing Time 0.019 seconds

A Comparative Study on the Testing Methods for the Analysis of Tensile Strength of GERP Rebars (GFRP 보강근의 인장강도 분석을 위한 시험방법 비교 연구)

  • You, Young-Chan;Park, Ji-Sun;You, Young-Jun;Park, Young-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.3 s.93
    • /
    • pp.303-312
    • /
    • 2006
  • The main objective of this experimental study is to examine the feasibilities of each testing method with various kinds of grip systems for the analysis of tensile strength of GFRP(glass fiber reinforced polymer) reinforcing bars. Three types of grip systems were examined such as resin-sleeved pipe-type grip proposed by CSA(Canadian Standard Association), frictional resistance type metal grip by ASTM(American Standard for Testing and Materials) and wedge-inserted cone-type grip normally used in prestressing tendons. Also, mechanical properties of GFRP rebars with different surface deformations were investigated for each different type of testing grip used in this study. All testing procedures including specimens preparation, set-up of test equipments and measuring devices were made according to the CSA S806-02 recommendations. From the test results, it was found that the highest tensile strengths of GFRP rebars were observed when tested by resin-sleeved grip system regardless of their different surface deformations. But tensile strengths of GFRP rebars by ASTM grip system are only 10% less than those by CSA grip system. On the other hand, CSA grip is not only difficult to prepare but also not disposable. Therefore, ASTM grip system is recommended as a practical alternative to estimate the tensile strength of GFRP rebars.

Development of Optimum Grip System in Developing Design Tensile Strength of GFRP Rebars (GFRP 보강근의 설계 인장강도 발현을 위한 적정 그립시스템 개발)

  • You Young-Chan;Park Ji-Sun;You Young-Jun;Park Young-Hwan;Kim Keung-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.947-953
    • /
    • 2005
  • Previous test results showed that the current ASTM(American Standard for Testing and Materials) grip adapter for GFRP(Glass Fiber Reinforced Polymer) rebar was not fully successful in developing the design tensile strength of GFRP rebars with reasonable accuracy. It is because the current ASTM grip adapter which is composed of a pair of rectangular metal blocks of which inner faces are grooved along the longitudinal direction does not take into account the various geometric characteristics of GFRP rebar such as surface treatment, shape of bar cross section as well as physical characteristics such as poisson effect, elastic modulus in the transverse direction and so on. The objective of this paper is to provide how to proportion the optimum diameter of inner groove in ASTM grip adapter to develop design tensile strength of GFRP rebar. The proportioning of inner groove in ASTM grip adapter is based on the force equilibrium of GFRP rebar between tensile capacity and minimum frictional resistance required along the grip adapter. The frictional resistance of grip adapter is calculated based on the compressive strain compatibility in radial direction induced by the difference between diameter of GFRP rebar and inner groove In ASTM grip. All testing procedures were made according to the CSA S806-02 recommendations. From the preliminary test results on round-type GFRP rebars, it was found that maximum tensile loads acquired under the same testing conditions is highly affected by the diameter of inner groove in ASTM grip adapter. The grip adapter with specific dimension proportioned by proposed method recorded the highest tensile strength among them.

Long-term administration of red ginseng non-saponin fraction rescues the loss of skeletal muscle mass and strength associated with aging in mice

  • Cho, Da-Eun;Choi, Gwang-Muk;Lee, Yong-Seok;Hong, Joon-Pyo;Yeom, Mijung;Lee, Bombi;Hahm, Dae-Hyun
    • Journal of Ginseng Research
    • /
    • v.46 no.5
    • /
    • pp.657-665
    • /
    • 2022
  • Background: Sarcopenia is a new and emerging risk factor aggravating the quality of life of elderly population. Because Korean Red Ginseng (RG) is known to have a great effect on relieving fatigue and enhancing physical performance, it is invaluable to examine its potential as an anti-sarcopenic drug. Methods: Anti-sarcopenic effect of non-saponin fraction of Korean Red Ginseng (RGNS) was evaluated in C2C12 myoblasts treated with C2-ceramide to induce senescence phenotypes, and 22-month-old mice fed with chow diet containing 2% RGNS (w/w) for 4 further months. Results: The RGNS treatment significantly alleviated cellular senescence indicated by intracellular lipid accumulation, increased amount of lysosomal β-galactosidase, and reduced proliferative capacity in C2C12 myoblasts. This effect was not observed with saponin fraction. In an aged mouse, the 4-month-RGNS diet significantly improved aging-associated loss of muscle mass and strength, assessed by the weights of hindlimb skeletal muscles such as tibialis anterior (TA), extensor digitorum longus (EDL), gastrocnemius (GN) and soleus (SOL), and the cross-sectional area (CSA) of SOL muscle, and the behaviors in grip strength and hanging wire tests, respectively. During the same period, an aging-associated shift of fast-to slow-twitch muscle in SOL muscle was also retarded by the RGNS treatment. Conclusions: These findings suggested that the long-term diet of RGNS significantly prevented aging-associated muscle atrophy and reduced physical performance, and thus RGNS has a strong potential to be developed as a drug that prevents or improves sarcopenia.

Effects of Boehmeria platanifolia Extract on Muscle Amelioration in Dexamethasone-Induced Muscle Atrophy Mouse Model (개모시풀추출물의 Dexamethasone 유도 근위축 마우스 모델에서 근개선 효과 연구)

  • Misun Kim;Heung Joo Yuk;Dong-Seon Kim;Yoon-Young Sung
    • The Korea Journal of Herbology
    • /
    • v.38 no.5
    • /
    • pp.31-37
    • /
    • 2023
  • Objective : This study was conducted to investigate the muscle-improving and therapeutic effects of Boehmeria platanifolia (BP) in a mouse model of dexamethasone-induced muscle atrophy. Methods : Muscle atrophy was induced in C57BL/6 mice by intraperitoneal administration of dexamethasone for 12 days. BP extract was administered orally at doses of 100 mg/kg and 200 mg/kg for 19 days, starting 7 days before the intraperitoneal administration of dexamethasone. Mice were weighed during the experimental period, and muscle strength and muscle weight were measured at the end of the experiment. The gastrocnemius (GASTROC) muscles of mice were isolated and the cross-sectional area (CSA) of the muscle fibers was measured after H&E staining. Results : Dexamethasone-induced muscle atrophy mice had a decrease in body weight compared to normal mice, and BP-administrated mice did not show significant change in body weight compared with a control group. Muscle strength in mice with induced muscle atrophy was reduced compared to normal and significantly increased with BP administration and positive control. In addition, the weight of the quadriceps (QUAD) muscle and fiber size of the GASTROC muscle, which was reduced in sarcopenia-induced mice, was increased by BP. Conclusion : BP extract increased muscle strength, muscle weight, and muscle fiber size in dexamethasone-induced muscle atrophy mice. This suggests that the efficacy of BP extracts in improving muscle strength and preventing and treating sarcopenia may be beneficial for the development of potential therapeutic or functional products.