Objective: The aim of this study is to propose a unit touch gesture model, which would be useful to predict the performance time on mobile devices. Background: When estimating usability based on Model-based Evaluation (MBE) in interfaces, the GOMS model measured 'operators' to predict the execution time in the desktop environment. Therefore, this study used the concept of operator in GOMS for touch gestures. Since the touch gestures are comprised of possible unit touch gestures, these unit touch gestures can predict to performance time with unit touch gestures on mobile devices. Method: In order to extract unit touch gestures, manual movements of subjects were recorded in the 120 fps with pixel coordinates. Touch gestures are classified with 'out of range', 'registration', 'continuation' and 'termination' of gesture. Results: As a results, six unit touch gestures were extracted, which are hold down (H), Release (R), Slip (S), Curved-stroke (Cs), Path-stroke (Ps) and Out of range (Or). The movement time predicted by the unit touch gesture model is not significantly different from the participants' execution time. The measured six unit touch gestures can predict movement time of undefined touch gestures like user-defined gestures. Conclusion: In conclusion, touch gestures could be subdivided into six unit touch gestures. Six unit touch gestures can explain almost all the current touch gestures including user-defined gestures. So, this model provided in this study has a high predictive power. The model presented in the study could be utilized to predict the performance time of touch gestures. Application: The unit touch gestures could be simply added up to predict the performance time without measuring the performance time of a new gesture.
The accurate determination of formation density and the physical properties of rocks is the most critical logging tasks which can be obtained using gamma-ray transport and detection tools. Though the simulation works published so far have considerably improved the knowledge of the parameters that govern the responses of the detectors in these tools, recent studies have found considerable differences between the results of using a conventional model of a homogeneous mixture of formation and fluid and an inhomogeneous fractured medium. It has increased concerns about the importance of the complexity of the model used for the medium in simulation works. In the present study, we have suggested two various models for the flow of the fluid in porous media and fractured rock to be used for logging purposes. For a typical gamma-gamma logging tool containing a 137Cs source and two NaI detectors, simulated by using the MCNPX code, a simplified porous (SP) model in which the formation is filled with elongated rectangular cubes loaded with either mineral material or oil was investigated. In this model, the oil directly reaches the top of the medium and the connection between the pores is not guaranteed. In the other model, the medium is a large 3-D matrix of 1 cm3 randomly filled cubes. The designed algorithm to fill the matrix sites is so that this realistic random (RR) model provides the continuum growth of oil flow in various disordered directions and, therefore, fulfills the concerns about modeling the rock textures consist of extremely complex pore structures. For an arbitrary set of oil concentrations and various formation materials, the response of the detectors in the logging tool has been considered as a criterion to assess the effect of modeling for the distribution of pores in the formation on simulation studies. The results show that defining a RR model for describing heterogeneities of a porous medium does not effectively improve the prediction of the responses of logging tools. Taking into account the computational cost of the particle transport in the complex geometries in the Monte Carlo method, the SP model can be satisfactory for gamma-gamma logging purposes.
This paper considers a transporter scheduling problem under dynamic block transportation environment in shipbuilding. In dynamic situations, there exist the addition, cancellation or change of block transportation requirements, sudden breakdowns and maintenance of transporters. The transportation of the blocks in the shipyard has some distinct characteristics. Some blocks are available to be picked up at a specific time during the planning horizon while some other blocks need to be delivered before a specific time. These requirements cause two penalty times: 1) delay times incurred when a block is picked up after a required start time, and 2) tardy times incurred when a block shipment is completed after the required delivery time. The blocks are located at different areas in the shipyard and transported by transporters. The objective of this paper is to propose a heuristic algorithm based on a network flow model which minimize the weighted sum of empty transporter travel times, delay times, and tardy times. Also, a rolling-horizon scheduling method is proposed for dynamic block transportation environment. The performance of the proposed heuristic algorithms are evaluated through a simulation experiment.
The Transactions of the Korean Institute of Electrical Engineers C
/
v.52
no.1
/
pp.42-46
/
2003
Arresters are deteriorated by overvoltages or impulse currents, and the resistive leakage current of arresters increases as the deterioration of the arrester progresses, showing an increase in the 3$^{rd}$ harmonic component of the leakage current. In this reason, arrester diagnostic techniques based on the 3$^{rd}$ harmonic leakage current as a reference parameter of deterioration are widely used. The technique, however, includes an error due to the harmonics of power system voltage. Therefore, the influence of the harmonics on arrester diagnostics should be considered. In this paper, we designed a PSpice ZnO arrester model to simulate the influence of the voltage harmonics described above. A pure sinusoidal voltage and its the 3r harmonic voltage were applied to the model, and the leakage current components were analyzed. From the simulation results, it is confirmed that the peak value of resistive leakage current depends not only on the phase of the 3$^{rd}$ harmonic voltage but also on the magnitude of it. Consequently, the errors caused 1)y the harmonic voltage could be minimized by correcting the magnitude of leakage current upon analyzing the harmonics.cs.
Journal of the Korea Academia-Industrial cooperation Society
/
v.8
no.4
/
pp.810-814
/
2007
It is now possible for the general public to publish their own publications without difficulties because of versatile Internet environments and cost-effective printing machines. However, special software design tools are still required in order to design name cards, leaflets, yellow books and free newspaper. In this paper, we present a computerized typesetting model which automates all procedures of generating business cards the most representative commercial design example. All processes in our model are performed over the Internet from application to generation. Based on our model, we also introduce a web-based computerized typesetting system which collaborates with the Adobe InDesign CS2 and generates image files in real time for user requests. Such a system is linked with an automatic payment system so that a PDF file, a target output, is generated after a user confirms his/her order.
Kim, Yeonghwa;Kim, Kiju;Lim, Heontae;Kim, Jihoon;Kong, Nam-Young
Journal of the Korean Geophysical Society
/
v.7
no.4
/
pp.237-245
/
2004
Series of basic experiments for current density calibration by user process and for density calibration using geophysical model borehole were made. We tried to find the sonde response characteristics for current calibration using water and aluminium field jig, and using the equation of half life of 137Cs source. The result of calibration test made in a geophysical model borehole built first in Korea shows a perfect linear calibration equation. By adopting this calibration equation we could estimate the limitation as well as possibility of current density calibration by user process.
Enhancing the performance of maritime wireless communication has been highlighted by the issue of cell planning in the sea area because of lack of an appropriate Propagation Loss Model (PLM). To resolve the cell planning issue in vast sea areas, it was essential to develop the (PLM) matching the intended sea area. However, there were considerable gaps between the prediction of legacy PLMs and field measurement in propagation loss and there was a need to develop the adjusted PLM (A-PLM). Therefore, cell planning was performed on this adjusted model, including modification of the base station's location, altitude, and antenna azimuth to meet the quality objectives. Furthermore, in order to verify the availability of the cell planning, Communication Service Quality Monitoring System (CS-QMS) was developed in the LTE-Maritime project to collect LTE signal quality information from the onboard equipment at regular intervals and to ensure that the service quality was high enough to satisfy the goals in each designated grid. As a result of verification, the success rate of RSRP was 95.7% for the intensive management zone (IMZ) and 96.4% for the interested zone (IZ), respectively.
In order to provide intelligent services without human intervention in the Internet of Things environment, it is necessary to analyze the big data generated by the IoT device and learn the normal pattern, and to predict the abnormal symptoms such as faulty or malfunction based on the learned normal pattern. The purpose of this study is to implement a machine learning model that can predict product failure by analyzing big data generated in various devices of product process. The machine learning model uses the big data analysis tool R because it needs to analyze based on existing data with a large volume. The data collected in the product process include the information about product faulty, so supervised learning model is used. As a result of the study, I classify the variables and variable conditions affecting the product failure, and proposed a prediction model for the product failure based on the decision tree. In addition, the predictive power of the model was significantly higher in the conformity and performance evaluation analysis of the model using the ROC curve.
In the case of object detection using deep learning, both accuracy and real-time are required. However, it is difficult to use a deep learning model that processes a large amount of data in a limited resource environment. To solve this problem, this paper proposes an object detection model for small embedded devices. Unlike the general detection model, the model size was minimized by using a structure in which the pre-trained feature extractor was removed. The structure of the model was designed by repeatedly stacking lightweight convolution blocks. In addition, the number of region proposals is greatly reduced to reduce detection overhead. The proposed model was trained and evaluated using the public dataset PASCAL VOC. For quantitative evaluation of the model, detection performance was measured with average precision used in the detection field. And the detection speed was measured in a Raspberry Pi similar to an actual embedded device. Through the experiment, we achieved improved accuracy and faster reasoning speed compared to the existing detection method.
In this paper, in order to obtain the optimization of the RNN model used for sentiment analysis, the correlation of each model was studied by observing the trend of loss and accuracy according to hyperparameter tuning. As a research method, after configuring the hidden layer with LSTM and the embedding layer that are most optimized to process sequential data, the loss and accuracy of each model were measured by tuning the unit, batch-size, and embedding size of the LSTM. As a result of the measurement, the loss was 41.9% and the accuracy was 11.4%, and the trend of the optimization model showed a consistently stable graph, confirming that the tuning of the hyperparameter had a profound effect on the model. In addition, it was confirmed that the decision of the embedding size among the three hyperparameters had the greatest influence on the model. In the future, this research will be continued, and research on an algorithm that allows the model to directly find the optimal hyperparameter will continue.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.