• 제목/요약/키워드: CRUD

검색결과 70건 처리시간 0.022초

Development of the vapor film thickness correlation in porous corrosion deposits on the cladding in PWR

  • Yuan Shen;Zhengang Duan;Chuan Lu ;Li Ji ;Caishan Jiao ;Hongguo Hou ;Nan Chao;Meng Zhang;Yu Zhou;Yang Gao
    • Nuclear Engineering and Technology
    • /
    • 제54권12호
    • /
    • pp.4798-4808
    • /
    • 2022
  • The porous corrosion deposits (known as CRUD) adhered to the cladding have an important effect on the heat transfer from fuel rods to coolant in PWRs. The vapor film is the main constituent in the two-phase film boiling model. This paper presents a vapor film thickness correlation, associated with CRUD porosity, CRUD chimney density, CRUD particle size, CRUD thickness and heat flux. The dependences of the vapor film thickness on the various influential factors can be intuitively reflected from this vapor film thickness correlation. The temperature, pressure, and boric acid concentration distributions in CRUD can be well predicted using the two-phase film boiling model coupled with the vapor film thickness correlation. It suggests that the vapor thickness correlation can estimate the vapor film thickness more conveniently than the previously reported vapor thickness calculation methods.

핵연료 피복관 부식생성물 부착에 대한 용존수소의 영향 (Effect of Dissolved Hydrogen on Fuel Crud Deposition)

  • 백승헌;김우철;심희상;임경수;원창환;허도행
    • Corrosion Science and Technology
    • /
    • 제13권2호
    • /
    • pp.56-61
    • /
    • 2014
  • The purpose of this work is to investigate the effect of dissolved hydrogen concentration on crud deposition onto the fuel cladding surface in the simulated primary environments of a pressurized water reactor. Crud deposition tests were conducted in the dissolved hydrogen concentration range of 5~70 cc/kg at $325^{\circ}C$ for 14 days. Needle-shaped NiO deposits were formed in the hydrogen range of 5~25 cc/kg, while polygonal nickel ferrite deposits were observed at a hydrogen concentration above 35 cc/kg. However, the dissolved hydrogen content seems to have little effect on the amount of crud deposits.

Development of Moving Alternating Magnetic Filter Using Permanent Magnet for Removal of Radioactive Corrosion Product from Nuclear Power Plant

  • M. C. Song;Kim, S. I.;Lee, K. J.
    • Nuclear Engineering and Technology
    • /
    • 제34권5호
    • /
    • pp.494-501
    • /
    • 2002
  • Radioactive Corrosion Products (CRUD) which are generated by the neutron activation of general corrosion products at the nuclear power plant are the major source of occupational radiation exposure. Most of the CRUD has a characteristic of showing strong ferrimagnetisms. Along with the new development and production of permanent magnet (rare earth magnet) which generates much stronger magnetic field than the conventional magnet, new type of magnetic filter that can separate CRUD efficiently and eventually reduce radiation exposure of personnel at nuclear power plant is suggested. This separator consists of inner and outer magnet assemblies, coolant channel and container surrounding the outer magnet assembly. The rotational motion of the inner and outer permanent magnet assemblies surrounding the coolant channel by driving motor system produces moving alternating magnetic fields in the coolant channel. The CRUD can be separated from the coolant by the moving alternating magnetic field. This study describes the results of preliminary experiment performed with the different flow rates of coolant and rotation velocities of magnet assemblies. This new magnetic filter shows better performance results of filtering the magnetite at coolant (water). How rates, rotating velocities of magnet assemblies and particle sizes turn out to be very important design parameters.

Analysis of cladding failure in a BWR fuel rod using a SLICE-DO model of the FALCON code

  • Khvostov, G.
    • Nuclear Engineering and Technology
    • /
    • 제52권12호
    • /
    • pp.2887-2900
    • /
    • 2020
  • Cladding failure in a fuel rod during operation in a BWR is analyzed using a FALCON code-based model. Comparative calculation with a neighbouring, intact rod is presented, as well. A considerable 'hot spot' effect in cladding temperature is predicted with the SLICE-DO model due to a thermal barrier caused by the localized crud deposition. Particularly significant overheating is expected to occur on the affected side of the cladding of the failed rod, in agreement with signs of significant localized crud deposition as revealed by Post Irradiation Examination. Different possibilities (criteria) are checked, and Pellet-Cladding Mechanical Interaction (PCMI) is shown to be one of the plausible potential threats. It is shown that PCMI could lead to discernible concentrated inelastic deformation in the overheated part of the cladding. None of the specific mechanisms considered can be experimentally or analytically identified as an only cause of the rod failure. However, according to the current calculation, a possibility of cladding failure by PCMI cannot be excluded if the crud thickness exceeded 300 ㎛.

핵연료 피복관 부식생성물 부착에 관한 Ni/Fe 이온 농도비의 영향 (Effect of Ni/Fe Ion Concentration Ratio on Fuel Cladding Crud Deposition)

  • 백승헌;김우철;심희상;임경수;허도행
    • Corrosion Science and Technology
    • /
    • 제13권4호
    • /
    • pp.145-151
    • /
    • 2014
  • The objectives of this study are to investigate the effect of the concentration ratios of Ni and Fe ions on crud deposition onto the fuel cladding surface in the simulated primary environments of a pressurized water reactor. Crud deposition tests were conducted in the Ni and Fe concentration ratios of 20:20 ppm, 39:1 ppm and 1:39 ppm at $325^{\circ}C$ for 14 days. In the case of the same Ni and Fe ion ratio (20:20), nickel ferrite with a polyhedral shape was formed. Nickel oxide deposits with a needle shape were formed in the condition of high Ni to Fe ion ratio (39:1), While polyhedral iron oxide and needle-like nickel oxide formed in the condition of low Ni to Fe ion ratio (1:39). The amount of deposits increased, when Fe oxides were formed. This indicates that Fe rich oxides stimulated Ni oxide deposition.

원자력 발전소 배관재를 이용한 고온 수화학 조건에서의 방사화 부식생성물 모사에 관한 연구 (Study on the Simulation of Crud Formation using Piping Materials of Nuclear Power Plant in High Temperature Water)

  • 김상현;김인섭;이건재
    • 방사성폐기물학회지
    • /
    • 제3권1호
    • /
    • pp.31-40
    • /
    • 2005
  • 발전소 내 방사화 부식생성물의 대부분을 차지하고 있는 니켈 페라이트계 부식생성물을 모사 발생시키기 위한 고온 고압용 장치를 제작하여 연구를 수행하였다. 배관형 포집기를 이용한 부식생성물 발생장치로부터 방사화 부식생성물과 가장 유사한 부식생성물을 얻을 수 있었다. 발전소에서 입자성 부식생성물이 발생되는 원리인 온도에 따른 용해도 차이를 구현하기 위하여 270$\^{circ}$C에서 부식반응이 일어나 상대적으로 높은 온도를 가진 포집용 장치에 부식생성물이 포집되도록 장치를 제작하였으며 , 발생된 부식생성물은 주사전자현미경 관찰과 EDAX를 통한 조성분석으로 그 특성을 관찰하였다. 부식생성물은 포집 된 위치 에 따라서 침상 형태의 산화물과 결정 형태의 산화물로 나뉘었으며, 조성 분석 결과 결정 형태의 부식생성물이 니켈 페라이트로서 발전소에서 발생되는 입자성 부식생성물과 유사한 것을 알 수 있었다.

  • PDF

Analysis of activated colloidal crud in advanced and modular reactor under pump coastdown with kinetic corrosion

  • Khurram Mehboob;Yahya A. Al-Zahrani
    • Nuclear Engineering and Technology
    • /
    • 제54권12호
    • /
    • pp.4571-4584
    • /
    • 2022
  • The analysis of rapid flow transients in Reactor Coolant Pumps (RCP) is essential for a reactor safety study. An accurate and precise analysis of the RCP coastdown is necessary for the reactor design. The coastdown of RCP affects the coolant temperature and the colloidal crud in the primary coolant. A realistic and kinetic model has been used to investigate the behavior of activated colloidal crud in the primary coolant and steam generator that solves the pump speed analytically. The analytic solution of the non-dimensional flow rate has been determined by the energy ratio β. The kinetic energy of the coolant fluid and the kinetic energy stored in the rotating parts of a pump are two essential parameters in the form of β. Under normal operation, the pump's speed and moment of inertia are constant. However, in a coastdown situation, kinetic damping in the interval has been implemented. A dynamic model ACCP-SMART has been developed for System Integrated Modular and Advanced Reactor (SMART) to investigate the corrosion due to activated colloidal crud. The Fickian diffusion model has been implemented as the reference corrosion model for the constituent component of the primary loop of the SMART reactor. The activated colloidal crud activity in the primary coolant and steam generator of the SMART reactor has been studied for different equilibrium corrosion rates, linear increase in corrosion rate, and dynamic RCP coastdown situation energy ratio b. The coolant specific activity of SMART reactor equilibrium corrosion (4.0 mg s-1) has been found 9.63×10-3 µCi cm-3, 3.53×10-3 µC cm-3, 2.39×10-2 µC cm-3, 8.10×10-3 µC cm-3, 6.77× 10-3 µC cm-3, 4.95×10-4 µC cm-3, 1.19×10-3 µC cm-3, and 7.87×10-4 µC cm-3 for 24Na, 54Mn, 56Mn, 59Fe, 58Co, 60Co, 99Mo, and 51Cr which are 14.95%, 5.48%, 37.08%, 12.57%, 10.51%, 0.77%, 18.50%, and 0.12% respectively. For linear and exponential coastdown with a constant corrosion rate, the total coolant and steam generator activity approaches a higher saturation value than the normal values. The coolant and steam generator activity changes considerably with kinetic corrosion rate, equilibrium corrosion, growth of corrosion rate (ΔC/Δt), and RCP coastdown situations. The effect of the RCP coastdown on the specific activity of the steam generators is smeared by linearly rising corrosion rates, equilibrium corrosion, and rapid coasting down of the RCP. However, the time taken to reach the saturation activity is also influenced by the slope of corrosion rate, coastdown situation, equilibrium corrosion rate, and energy ratio β.

국내 PWR 일차측 CRUD 제거를 위한 원자로 정지시 화학처리 조건 도출 (I)

  • 성기웅;나정원;김용익;성기방;강덕원;송명재
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 추계학술발표회논문집(1)
    • /
    • pp.133-139
    • /
    • 1996
  • PWR 원전에서의 원자로 정지시 일차측 화학제어 특성을 고찰하고 제어조건을 검토하여 국내 PWR 일차측 CRUD 제거를 위한 원자로 정지시 화학처리 조건을 도출하였다. 주요 정지시 화학처리 조건으로, 조기붕소화, 산성-환원 분위기 조성 (수소농도 $\geq$ 15cc/kg- $H_2O$), 과산화수소에 의한 산소화 (주입온도 82$^{\circ}C$, 주입농도 2~8 ppm) 및 정화 탈염기 유량을 최대로 하는 운전을 제시하였다.

  • PDF

방사성 부식생성물 제거를 위한 전자석 및 영구자석을 이용한 필터의 개념설계 (Conceptual Design of the Filter using Electromagnet and Permanent Magnets for Removal of Radioactive Corrosion Products)

  • 송민철;공태영;이건재
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2003년도 가을 학술논문집
    • /
    • pp.38-42
    • /
    • 2003
  • 가압경수형 원자력발전소 일차계통에서 발생되는 방사성 부식생성물(크러드)은 원자력발전소 작업종사자 피폭의 주요원인이다. 또한, 최근 원자력발전소의 장주기운전 추세에 따라 장기간 노심에 침적된 방사성 부식생성물은 hideout 현상으로 노심의 출력에 영향을 주는 축방향이상출력(AOA) 현상의 원인이 되고 있다. 크러드의 주요 성분은 마그네타이트, 니켈페라이트, 코발트페라이트가 주를 이루며, 이러한 산화물 형태는 강자성의 자기적 성질을 가지고 있다. 따라서, 전자석과 영구자석의 적절한 배치를 통하여 자기장을 발생시켜 크러드를 제거하는 필터 개발을 위해 개념 설계를 하였다. 기존의 필터와 달리 유체의 흐름을 방해하지 않아 압력저하 현상이 발생하지 않고, 연속적으로 사용할 수 있는 장점이 있다. 크러드 제거 기술의 하나로써 활용될 수 있을 것으로 기대된다.

  • PDF