• Title/Summary/Keyword: CRM 실행

Search Result 33, Processing Time 0.021 seconds

Forecasting of Customer's Purchasing Intention Using Support Vector Machine (Support Vector Machine 기법을 이용한 고객의 구매의도 예측)

  • Kim, Jin-Hwa;Nam, Ki-Chan;Lee, Sang-Jong
    • Information Systems Review
    • /
    • v.10 no.2
    • /
    • pp.137-158
    • /
    • 2008
  • Rapid development of various information technologies creates new opportunities in online and offline markets. In this changing market environment, customers have various demands on new products and services. Therefore, their power and influence on the markets grow stronger each year. Companies have paid great attention to customer relationship management. Especially, personalized product recommendation systems, which recommend products and services based on customer's private information or purchasing behaviors in stores, is an important asset to most companies. CRM is one of the important business processes where reliable information is mined from customer database. Data mining techniques such as artificial intelligence are popular tools used to extract useful information and knowledge from these customer databases. In this research, we propose a recommendation system that predicts customer's purchase intention. Then, customer's purchasing intention of specific product is predicted by using data mining techniques using receipt data set. The performance of this suggested method is compared with that of other data mining technologies.

Exploring Navigation Pattern and Site Evaluation Variation in a Community Website by Mixture Model at Segment Level (커뮤니티 사이트 특성과 navigation pattern 연관성의 세분시장별 이질성분석 - 믹스처모델의 구조방정식 적용을 중심으로 -)

  • Kim, So-Young;Kwak, Young-Sik;Nam, Yong-Sik
    • Journal of Global Scholars of Marketing Science
    • /
    • v.13
    • /
    • pp.209-229
    • /
    • 2004
  • Although the site evaluation factors that affect the navigation pattern are well documented, the attempt to explore the difference in the relationship between navigation pattern and site evaluation factors by post hoc segmentation approach has been relatively rare. For this purpose, this study constructs the structure equation model using web-evaluation data and log file of a community site with 300,000 members. And then it applies the structure equation model to each segment. Each segment is identified by mixture model. Mixture model is to unmix the sample, to identify the segments, and to estimate the parameters of the density function underlying the observed data within each segment. The study examines the opportunity to increase GFI, using mixture model which supposes heterogeneous groups in the users, not through specification search by modification index from structure equation model. This study finds out that AGFI increases from 0.819 at total sample to 0.927, 0.930, 0.928, 0.929 for each 4 segments in the case of the community site. The results confirm that segment level approach is more effective than model modification when model is robust in terms of theoretical background. Furthermore, we can identify a heterogeneous navigation pattern and site evaluation variation in the community website at segment level.

  • PDF

Improving the Effectiveness of Customer Classification Models: A Pre-segmentation Approach (사전 세분화를 통한 고객 분류모형의 효과성 제고에 관한 연구)

  • Chang, Nam-Sik
    • Information Systems Review
    • /
    • v.7 no.2
    • /
    • pp.23-40
    • /
    • 2005
  • Discovering customers' behavioral patterns from large data set and providing them with corresponding services or products are critical components in managing a current business. However, the diversity of customer needs coupled with the limited resources suggests that companies should make more efforts on understanding and managing specific groups of customers, not the whole customers. The key issue of this paper is based on the fact that the behavioral patterns extracted from the specific groups of customers shall be different from those from the whole customers. This paper proposes the idea of pre-segmentation before developing customer classification models. We collected three customers' demographic and transactional data sets from a credit card, a tele-communication, and an insurance company in Korea, and then segmented customers by major variables. Different churn prediction models were developed from each segments and the whole data set, respectively, using the decision tree induction approach, and compared in terms of the hit ratio and the simplicity of generated rules.