• 제목/요약/키워드: CRM 실행

검색결과 33건 처리시간 0.015초

Support Vector Machine 기법을 이용한 고객의 구매의도 예측 (Forecasting of Customer's Purchasing Intention Using Support Vector Machine)

  • 김진화;남기찬;이상종
    • 경영정보학연구
    • /
    • 제10권2호
    • /
    • pp.137-158
    • /
    • 2008
  • 기업 경쟁력 강화의 중요한 이슈인 대량 개별화(mass-customization)의 실행을 위하여 통합 고객관계 관리 프로세스로서의 CRM(customer relationship management)에 대한 관심과 활용에 대한 필요성은 점점 더 높아지고 있다. 특히, 기존 고객들의 구매 정보를 기반으로 고객의 구매 패턴을 파악하고 의도를 예측하는 것은 오늘날 실질적인 판매 전략을 수립하는 마케팅 분야에서 상당히 큰 비중을 차지하고 있다. 고객의 구매의도 예측에는 대량의 데이터로부터 과거에 인지하지 못했던 의미 있고, 근거 있는 정보를 추출하는 데이터마이닝(datamining)이 주로 사용되고 있다. 기존의 구매의도 예측에 사용된 데이터마이닝 기법들은 주로 신경망(neural networks)과 로지스틱 회귀분석(logistic regression analysis)이었는데, 예측 정확성 및 모형 구축의 어려움으로 인한 다양한 문제점들이 제기되고 있는 실정이다. 따라서, 본 논문에서는 기존의 기법들이 가지고 있는 단점들을 개선하기 위하여 신경망과 로지스틱 회귀분석 외에 연관규칙(association rule), 연관성 매트릭스(association matrix), 의사결정 나무(decision tree), 베이지안 망(bayesian network), SVM(support vector machine) 기법들을 추가로 제안하였다. 본 연구의 목적은 고객의 특정 상품에 대한 구매의도 예측을 위하여 새로운 알고리즘을 제시하기보다는 기존의 다양한 데이터마이닝 기법들을 적용시켜 봄으로써, 가장 우수한 예측성과를 나타내는 기법을 발견하는 것이다. 연구에 사용된 자료는 기존의 연구에서는 적용되지 않았던 편의점의 영수증 데이터이다. 예측 목표상품은 카테고리화 된 '우유'와 '냉동식품'이며, 제안된 기법들의 신뢰성을 위하여 전체 데이터를 10개의 training과 test 셋으로 중복되지 않게 구분함과 동시에 10번의 교차 검증(cross validation)을 실시하였다. 실험 결과 SVM이 영수증 데이터를 이용한 고객의 특정 상품에 대한 구매의도 예측에서 가장 우수한 성과를 나타내는 것을 확인하였다.

커뮤니티 사이트 특성과 navigation pattern 연관성의 세분시장별 이질성분석 - 믹스처모델의 구조방정식 적용을 중심으로 - (Exploring Navigation Pattern and Site Evaluation Variation in a Community Website by Mixture Model at Segment Level)

  • 김소영;곽영식;남용식
    • 마케팅과학연구
    • /
    • 제13권
    • /
    • pp.209-229
    • /
    • 2004
  • 기존의 인터넷소비자의 방문행동에 관한 연구들이 대부분 전체시장 수준에서 이루어졌고, 시장세분화를 하더라도 사전적 시장세분화로서 연구자의 주관이 반영되는 경우가 많다는 문제점이 있었다. 본 연구에서는 세분시장 수준에서의 인터넷소비자 방문행동 연구가 필요하다는 점과 함께 연구자의 임의성율 배제한 사후적 시장세분화의 필요성을 제기하고 이를 믹스처모델로 실증적으로 분석하였다. 또한 기존 연구가 웹사이트 평가요인과 방문행동 간의 단편적인 인과관계를 파악한 것과는 달리, 웹 사이트 방문행동에 영향을 미치는 요인들 간의 간접효과에 따른 통합적인 인과관계를 파악하였다. 연구에서는 실제 커뮤니티 사이트를 방문한 1,765명 의 웹상의 움직임과 설문조사를 통해 세분시장별로 이질적인 navigation pattern 과 원인변수와의 관계가 존재함을 입증하였다. 마케터는 이런 세분시장멸 이질적 관계를 이용하여 eCRM을 실행함에 있어 navigation pattern의 이질성에 영향을 미치는 변수를 세분시장별로 조절함으로써 기업이 원하는 방향으로 고객의 웹사이트 방문행위를 유도할 수 있는 기회를 얻게 되었다.

  • PDF

사전 세분화를 통한 고객 분류모형의 효과성 제고에 관한 연구 (Improving the Effectiveness of Customer Classification Models: A Pre-segmentation Approach)

  • 장남식
    • 경영정보학연구
    • /
    • 제7권2호
    • /
    • pp.23-40
    • /
    • 2005
  • 시장에서의 경쟁이 점차 심화되고 서비스나 상품에 대한 고객들의 요구와 기대치가 증가함에 따라 기업들에 있어 과학적인 데이터 분석에 근거한 경영전략 수립 및 실행의 필요성이 어느 때보다 크게 강조되고 있다. 그러나 인적자원과 및 자금 등을 포함한 가용자원은 한정적이기 때문에 이들 자원을 얼마나 효율적으로 사용하여 효과적인 결과를 획득하는가가 기업 성패를 좌우하는 주요 지표가 되고있다. 본 연구에서는 선택과 집중적 자원 배분이라는 이슈에 초점을 맞춰 사전 세분화를 통해 선정된 고객 군만을 대상으로 고객의 특성을 파악하고 관리하는 방안이 전체 고객을 대상으로 하는 것보다 보다 의미가 있다는 것을 실제 현업데이터를 통해 검증하고자 하였다. 이를 위해 카드사, 이동통신사, 보험사의 고객 인적데이터 및 거래데이터를 수집하였고, 통계분석과 현업전문가의 의견을 수렴해 고객 세분화를 수행하였으며, 각 세분 군별로 데이터마이닝의 의사결정나무 기법을 이용해 해지모형을 구축하여 전체 고객을 대상으로 한 모형과 정분류율과 규칙의 간결성 측면에서 비교 평가하였다. 결과적으로 세분 군별 해지모형이 전체 고객대상 모형에 비해 정분류율은 높거나 비슷한 수준을 유지하면서 보다 간결하고 의미있는 규칙을 제공하였다.