• 제목/요약/키워드: CRISPR/CAS9

검색결과 141건 처리시간 0.028초

양송이 원형질체 분리와 PEG 형질전환법의 최적화 (Optimization of protoplast isolation and PEG-mediated transformation in Agaricus bisporus)

  • 김민식;장갑열;이윤상;오민지;임지훈;오연이
    • 한국버섯학회지
    • /
    • 제19권3호
    • /
    • pp.256-259
    • /
    • 2021
  • 현재 양송이 품종의 개발은 1980년대에 개발된 방법에 의존하여 진행되고 있다. 유전자가위를 이용한 유전자교정 기술이 다양한 분야에서 각광받고 있고, 이 기술을 버섯 육종에도 적용하기 위하여 진행된 이 연구에서는, CRISPR/Cas9 활용에 필수적인 원형질체 분리 효율을 1.0 × 108/mL까지 안정적으로 끌어올렸고, spermidine을 이용하여 PEG 형질전환의 효율 또한 기존 방법에 비해 100배가량 끌어올렸음을 보고한다.

C1qa deficiency in mice increases susceptibility to mouse hepatitis virus A59 infection

  • Kim, Han-Woong;Seo, Sun-Min;Kim, Jun-Young;Lee, Jae Hoon;Lee, Han-Woong;Choi, Yang-Kyu
    • Journal of Veterinary Science
    • /
    • 제22권3호
    • /
    • pp.36.1-36.12
    • /
    • 2021
  • Background: Mouse hepatitis virus (MHV) A59 is a highly infectious pathogen and starts in the respiratory tract and progresses to systemic infection in laboratory mice. The complement system is an important part of the host immune response to viral infection. It is not clear the role of the classical complement pathway in MHV infection. Objectives: The purpose of this study was to determine the importance of the classical pathway in coronavirus pathogenesis by comparing C1qa KO mice and wild-type mice. Methods: We generated a C1qa KO mouse using CRISPR/Cas9 technology and compared the susceptibility to MHV A59 infection between C1qa KO and wild-type mice. Histopathological and immunohistochemical changes, viral loads, and chemokine expressions in both mice were measured. Results: MHV A59-infected C1qa KO mice showed severe histopathological changes, such as hepatocellular necrosis and interstitial pneumonia, compared to MHV A59-infected wild-type mice. Virus copy numbers in the olfactory bulb, liver, and lungs of C1qa KO mice were significantly higher than those of wild-type mice. The increase in viral copy numbers in C1qa KO mice was consistent with the histopathologic changes in organs. These results indicate that C1qa deficiency enhances susceptibility to MHV A59 systemic infection in mice. In addition, this enhanced susceptibility effect is associated with dramatic elevations in spleen IFN-γ, MIP-1 α, and MCP-1 in C1qa KO mice. Conclusions: These data suggest that C1qa deficiency enhances susceptibility to MHV A59 systemic infection, and activation of the classical complement pathway may be important for protecting the host against MHV A59 infection.

Enhanced Production of Soluble Pyrococcus furiosus α-Amylase in Bacillus subtilis through Chaperone Co-Expression, Heat Treatment and Fermentation Optimization

  • Zhang, Kang;Tan, Ruiting;Yao, Dongbang;Su, Lingqia;Xia, Yongmei;Wu, Jing
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권4호
    • /
    • pp.570-583
    • /
    • 2021
  • Pyrococcus furiosus α-amylase can hydrolyze α-1,4 linkages in starch and related carbohydrates under hyperthermophilic condition (~ 100℃), showing great potential in a wide range of industrial applications, while its relatively low productivity from heterologous hosts has limited the industrial applications. Bacillus subtilis, a gram-positive bacterium, has been widely used in industrial production for its non-pathogenic and powerful secretory characteristics. This study was conducted to increase production of P. furiosus α-amylase in B. subtilis through three strategies. Initial experiments showed that co-expression of P. furiosus molecular chaperone peptidyl-prolyl cis-trans isomerase through genomic integration mode, using a CRISPR/Cas9 system, increased soluble amylase production. Therefore, considering that native P. furiosus α-amylase is produced within a hyperthermophilic environment and is highly thermostable, heat treatment of intact culture at 90℃ for 15 min was performed, thereby greatly increasing soluble amylase production. After optimization of the culture conditions (nitrogen source, carbon source, metal ion, temperature and pH), experiments in a 3-L fermenter yielded a soluble activity of 3,806.7 U/ml, which was 3.3- and 28.2-fold those of a control without heat treatment (1,155.1 U/ml) and an empty expression vector control (135.1 U/ml), respectively. This represents the highest P. furiosus α-amylase production reported to date and should promote innovation in the starch liquefaction process and related industrial productions. Meanwhile, heat treatment, which may promote folding of aggregated P. furiosus α-amylase into a soluble, active form through the transfer of kinetic energy, may be of general benefit when producing proteins from thermophilic archaea.

Identification of a Cupin Protein Gene Responsible for Pathogenicity, Phage Susceptibility and LPS Synthesis of Acidovorax citrulli

  • Rahimi-Midani, Aryan;Kim, Min-Jung;Choi, Tae-Jin
    • The Plant Pathology Journal
    • /
    • 제37권6호
    • /
    • pp.555-565
    • /
    • 2021
  • Bacteriophages infecting Acidovorax citrulli, the causal agent of bacterial fruit blotch, have been proven to be effective for the prevention and control of this disease. However, the occurrence of bacteriophage-resistant bacteria is one of hurdles in phage biocontrol and the understanding of phage resistance in this bacterium is an essential step. In this study, we aim to investigate possible phage resistance of A. citrulli and relationship between phage resistance and pathogenicity, and to isolate and characterize the genes involved in these phenomena. A phage-resistant and less-virulent mutant named as AC-17-G1 was isolated among 3,264 A. citrulli Tn5 mutants through serial spot assays and plaque assays followed by pathogenicity test using seed coating method. The mutant has the integrated Tn5 in the middle of a cupin protein gene. This mutant recovered its pathogenicity and phage sensitivity by complementation with corresponding wild-type gene. Site-directed mutation of this gene from wild-type by CRISPR/Cas9 system resulted in the loss of pathogenicity and acquisition of phage resistance. The growth of AC-17-G1 in King's B medium was much less than the wild-type, but the growth turned into normal in the medium supplemented with D-mannose 6-phosphate or D-fructose 6-phosphate indicating the cupin protein functions as a phosphomannos isomerase. Sodium dodecyl sulfa analysis of lipopolysaccharide (LPS) extracted from the mutant was smaller than that from wild-type. All these data suggest that the cupin protein is a phosphomannos isomerase involved in LPS synthesis, and LPS is an important determinant of pathogenicity and phage susceptibility of A. citrulli.

Drug evaluation based on phosphomimetic PDHA1 reveals the complexity of activity-related cell death in A549 non-small cell lung cancer cells

  • Jin, Ling;Cho, Minkyoung;Kim, Bo-Sung;Han, Jung Ho;Park, Sungmi;Lee, In-Kyu;Ryu, Dongryeol;Kim, Jae Ho;Bae, Sung-Jin;Ha, Ki-Tae
    • BMB Reports
    • /
    • 제54권11호
    • /
    • pp.563-568
    • /
    • 2021
  • Cancer cells predominantly generate energy via glycolysis, even in the presence of oxygen, to support abnormal cell proliferation. Suppression of PDHA1 by PDK1 prevents the conversion of cytoplasmic pyruvate into Acetyl-CoA. Several PDK inhibitors have been identified, but their clinical applications have not been successful for unclear reasons. In this study, endogenous PDHA1 in A549 cells was silenced by the CRISPR/Cas9 system, and PDHA1WT and PDHA13SD were transduced. Since PDHA13SD cannot be phosphorylated by PDKs, it was used to evaluate the specific activity of PDK inhibitors. This study highlights that PDHA1WT and PDHA13SD A549 cells can be used as a cell-based PDK inhibitor-distinction system to examine the relationship between PDH activity and cell death by established PDK inhibitors. Leelamine, huzhangoside A and otobaphenol induced PDH activity-dependent apoptosis, whereas AZD7545, VER-246608 and DCA effectively enhanced PDHA1 activity but little toxic to cancer cells. Furthermore, the activity of phosphomimetic PDHA1 revealed the complexity of its regulation, which requires further in-depth investigation.

Differentiation and Characterization of Cystic Fibrosis Transmembrane Conductance Regulator Knockout Human Pluripotent Stem Cells into Salivary Gland Epithelial Progenitors

  • Shuang Yan;Yifei Zhang;Siqi Zhang;Shicheng Wei
    • International Journal of Stem Cells
    • /
    • 제16권4호
    • /
    • pp.394-405
    • /
    • 2023
  • The differentiation of pluripotent stem cells has been used to study disease mechanisms and development. We previously described a method for differentiating human pluripotent stem cells (hPSCs) into salivary gland epithelial progenitors (SGEPs). Here, cystic fibrosis transmembrane conductance regulator (CFTR) knockout hPSCs were differentiated into SGEPs derived from CFTR knockout hESCs (CF-SGEPs) using the same protocol to investigate whether the hPSC-derived SGEPs can model the characteristics of CF. CF-a disease that affects salivary gland (SG) function-is caused by mutations of the CFTR gene. Firstly, we successfully generated CFTR knockout hPSCs with reduced CFTR protein expression using the CRISPR-Cas9 system. After 16 days of differentiation, the protein expression of CFTR decreased in SGEPs derived from CFTR knockout hESCs (CF-SGEPs). RNA-Seq revealed that multiple genes modulating SG development and function were down-regulated, and positive regulators of inflammation were up-regulated in CF-SGEPs, correlating with the salivary phenotype of CF patients. These results demonstrated that CFTR suppression disrupted the differentiation of hPSC-derived SGEPs, which modeled the SG development of CF patients. In summary, this study not only proved that the hPSC-derived SGEPs could serve as manipulable and readily accessible cell models for the study of SG developmental diseases but also opened up new avenues for the study of the CF mechanism.

Development of a Novel ATP Bioluminescence Assay Based on Engineered Probiotic Saccharomyces boulardii Expressing Firefly Luciferase

  • Ji Sun Park;Young-Woo Kim;Hyungdong Kim;Sun-Ki Kim;Kyeongsoon Park
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권11호
    • /
    • pp.1506-1512
    • /
    • 2023
  • Quantitative analysis of adenosine triphosphate (ATP) has been widely used as a diagnostic tool in the food and medical industries. Particularly, the pathogenesis of a few diseases including inflammatory bowel disease (IBD) is closely related to high ATP concentrations. A bioluminescent D-luciferin/luciferase system, which includes a luciferase (FLuc) from the firefly Photinus pyralis as a key component, is the most commonly used method for the detection and quantification of ATP. Here, instead of isolating FLuc produced in recombinant Escherichia coli, we aimed to develop a whole-cell biocatalyst system that does not require extraction and purification of FLuc. To this end, the gene coding for FLuc was introduced into the genome of probiotic Saccharomyces boulardii using the CRISPR/Cas9-based genome editing system. The linear relationship (r2 = 0.9561) between ATP levels and bioluminescence generated from the engineered S. boulardii expressing FLuc was observed in vitro. To explore the feasibility of using the engineered S. boulardii expressing FLuc as a whole-cell biosensor to detect inflammation biomarker (i.e., ATP) in the gut, a colitis mouse model was established using dextran sodium sulfate as a colitogenic compound. Our findings demonstrated that the whole-cell biosensor can detect elevated ATP levels during gut inflammation in mice. Therefore, the simple and powerful method developed herein could be applied for non-invasive IBD diagnosis.

유전적 특성과 농업형질의 비교분석을 통한 유전자 교정 벼의 안전성 평가 (Evaluation of Genetic Safety in Genome-editing Rice Through Comparative Analysis of Genetic and Agronomic Traits)

  • 정승교;권도형;이배현;서정환;라마툴라잔;박재령;류태훈;김경민
    • 생명과학회지
    • /
    • 제34권8호
    • /
    • pp.567-575
    • /
    • 2024
  • New Breeding Technology (NBT)는 특정 DNA 서열을 인식하여 원하는 위치에서 DNA의 염기서열을 제거, 수정 또는 삽입할 수 있으며, 이는 인간의 유전병 치료나 가축 및 작물의 특성 향상에 사용될 수 있다. 본 연구에서는 모본인 벼(Oryza sativa L., cv Ilmi)와 CRISPR/Cas9의 SDN-1에 의해 T와 G염기가 들어간 3세대 유전자 교정 벼(OsCKq1-G3)의 출수기, 간장, 수장, 수수, 수량, 유전자 전이 안전성, 발아율, 수발아율, 탈립성, 동토발아 활력, 독소 및 알레르겐 생성 여부를 분석했다. 목표형질인 출수기는 유전자 교정 벼가 5일 빨랐다. 간장, 수장, 수수, 수량은 Ilmi와 동일했다. 유전자 전이성을 확인하기 위한 T-DNA 밴드는 모두 확인되지 않았다. 3세대 유전자 교정 벼에서 자가 교배를 통한 세대가 지남에 따라 T-DNA가 사라진 것을 확인했다. 발아율, 수발아율, 탈립성과 동토발아 활력검증 분석을 통해 유전자 교정 벼의 잡초화 가능성은 없다는 것을 확인했다. 교정된 벼의 ORF 및 아미노산 서열에서 독소와 알레르겐은 발견되지 않았다. 본 실험을 통해 유전자 교정 벼의 안전성을 입증했고, 유전자 교정 벼의 환경 위해성 평가에 중요한 자료로 활용될 수 있을 것으로 사료된다.

Collagen-Induced Arthritis Analysis in Rhbdf2 Knockout Mouse

  • Lee, Min-Young;Kang, Ju-Seong;Go, Ryeo-Eun;Byun, Yong-Sub;Wi, Young Jin;Hwang, Kyung-A;Choi, Jae-Hoon;Kim, Hyoung-Chin;Choi, Kyung-Chul;Nam, Ki-Hoan
    • Biomolecules & Therapeutics
    • /
    • 제26권3호
    • /
    • pp.298-305
    • /
    • 2018
  • Rhomboid family member 2 gene (Rhbdf2) is an inactive homologue lacking essential catalytic residues of rhomboid intramembrane serine proteases. The protein is necessary for maturation of tumor necrosis factor-alpha ($TNF-{\alpha}$) converting enzyme, which is the molecule responsible for the release of $TNF-{\alpha}$. In this study, Rhbdf2 knockout (KO) mice were produced by CRISPR/CAS9. To see the effects of the failure of $TNF-{\alpha}$ release induced by Rhbdf2 gene KO, collagen-induced arthritis (CIA), which is the representative $TNF-{\alpha}$ related disease, was induced in the Rhbdf2 mutant mouse using chicken collagen type II. The severity of the CIA was measured by traditional clinical scores and histopathological analysis of hind limb joints. A rota-rod test and grip strength test were employed to evaluate the severity of CIA based on losses of physical functions. The results indicated that Rhbdf2 mutant mice showed clear alleviation of the clinical severity of CIA as demonstrated by the significantly lower severity indexes. Moreover, a grip strength test was shown to be useful for the evaluation of physical functional losses by CIA. Overall, the results showed that the Rhbdf2 gene has a significant effect on the induction of CIA, which is related to $TNF-{\alpha}$.

외래 DNA단편이 잔존하지 않는 유전자교정식물에 대한 GMO규제 범위의 제외에 관한 국제 동향 (Current status on the modification of the scope for GMO regulation on the gene edited plants with no remnants of inserted foreign DNA fragments)

  • 이신우
    • Journal of Plant Biotechnology
    • /
    • 제46권3호
    • /
    • pp.137-142
    • /
    • 2019
  • 유전자교정작물은 공여 DNA의 사용 여부와 돌연변이의 크기에 따라 SDN-1, SDN-2, SDN-3 작물로 분류한다. 특히 SDN-1과 SDN-2 작물들은 이들을 창출하기 위하여 사용한 운반체 DNA 단편 또는 guide RNA가 잔존 하지 않는 100% transgene-free 작물의 개발이 가능하다. 따라서 이들은 기존의 전통교배육종기술을 이용하거나 자연 상태에서도 창출이 가능한 작물들이다. 그러므로 기존의 GMO 법령에 따라 이들 유전자교정작물을 판별하거나 표시제에 근거한 관리 감독을 수행하기가 어렵다. 이러한 과학적 사실에 근거하여 호주는 SDN-1 작물은 GMO 규제에서 제외하도록 하였다. 또한, 아르헨티나, 브라질, 일본 등은 외래유전자가 최종산물에 잔존 하지 않는 유전자교정작물은 GMO 규제에서 제외하도록 하여 SDN-1은 물론 SDN-2 작물도 GMO에 포함되지 않을 수도 있도록 하였다. 이러한 추세에 따라 우리나라도 외래유전자가 잔존 하지 않는 유전자교정작물은 GMO 규제에서 제외하도록 하여 유전자교정기술을 이용한 다양한 작물 육종 계통 육성이 널리 이용되어 우수 품종 육성에 기여되길 기대한다.