• Title/Summary/Keyword: CR structures

Search Result 217, Processing Time 0.025 seconds

Biomechanical investigation of maxillary implant-supported full-arch prostheses produced with different framework materials: a finite elements study

  • Mirac Berke Topcu, Ersoz;Emre, Mumcu
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.6
    • /
    • pp.346-359
    • /
    • 2022
  • PURPOSE. Four and six implant-supported fixed full-arch prostheses with various framework materials were assessed under different loading conditions. MATERIALS AND METHODS. In the edentulous maxilla, the implants were positioned in a configuration of four to six implant modalities. CoCr, Ti, ZrO2, and PEEK materials were used to produce the prosthetic structure. Using finite element stress analysis, the first molar was subjected to a 200 N axial and 45° oblique force. Stresses were measured on the bone, implants, abutment screw, abutment, and prosthetic screw. The Von Mises, maximum, and minimum principal stress values were calculated and compared. RESULTS. The maximum and minimum principal stresses in bone were determined as CoCr < ZrO2 < Ti < PEEK. The Von Mises stresses on the implant, implant screw, abutment, and prosthetic screws were determined as CoCr < ZrO2 < Ti < PEEK. The highest Von Mises stress was 9584.4 Mpa in PEEK material on the prosthetic screw under 4 implant-oblique loading. The highest maximum principal stress value in bone was found to be 120.89 Mpa, for PEEK in 4 implant-oblique loading. CONCLUSION. For four and six implant-supported structures, and depending on the loading condition, the system accumulated different stresses. The distribution of stress was reduced in materials with a high elastic modulus. When choosing materials for implant-supported fixed prostheses, it is essential to consider both the number of implants and the mechanical and physical attributes of the framework material.

Effect of Cooling Rate and Temperature on Intercritical Annealing of Medium-Carbon Cr-Mo Alloy for High Strength Cold Heading Quality Wire Rod (고강도 냉간압조용 중탄소 Cr-Mo 합금강의 임계간 어닐링시 냉각속도 및 온도의 영향)

  • JongHyeok Lee;ByoungLok Jang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.4
    • /
    • pp.230-236
    • /
    • 2023
  • The current study deals with the effect of cooling rate and temperature for annealing on medium-carbon Cr-Mo alloy steel, especially for cold heading quality wire rod, to derive the optimum micro-structures for plastic deformation. This is to optimize the spheroidization heat treatment conditions for softening the material. Heat treatment was performed under seven different conditions at a temperature between Ac1 and Ac3, mostly within 720℃ to 760℃, and the main variables at this time were temperature, retention time and cooling rate. Microstructure and phase changes were observed for each test condition, and it was confirmed that they were greatly affected by the cooling rate. It was also confirmed that the cooling rate was changed in the range of 0.1℃/min to 5℃/min and affected by phase deformation and spheroidization fraction. The larger the spheroidization fraction, the lower the hardness, which is associated with the increasing connection of ferrite phases.

Study of Specific energy of mechanical destruction of ice for calculation of ice load on ships and offshore structures

  • Tsuprik, V.G.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.7
    • /
    • pp.718-728
    • /
    • 2013
  • Analysis of scenarios of transportation oil and gas which produced in the Arctic and others cold seas shows that in the near-term there will be a significant increase of tonnage of tankers for oil and gas and number of ships which should be exploited in difficult ice conditions. For the construction of ice-resistant structures (IRS) intended for production of oil and gas and transportation of these products at ice-class vessels, calculating the load from ice to board the ship and on surface of supports of the platforms are the actuality and urgent tasks. These tasks have one basis in both cases: at beginning of the contact occurs fracture of edge of ice, then occurs compressing of rubble shattered of ice, then they extruding from contact area, after this next layer of ice begin to destruct. At calculating the strength of plating and elements construct of vessels, icebreakers and ice-resistant platforms the specific energy of mechanical destruction ice ${\epsilon}_{cr}$ is an important parameter. For the whole period of study of physical and mechanical characteristics of sea ice have been not many experimental studies various researchers to obtain numerical values of this energetic characteristic of the strength of ice by a method called Ball Drop Test. This study shows that the destruction of the ice from dynamic loading in zone of contact occurs in several cycles, and the ice destructed with a minimum numerical values of ${\epsilon}_{cr}$. The author offer this energy characteristic to take as a base value for the calculation of ice load on ships and offshore structures.

Dislocation dynamics simulation on stability of high dense dislocation structure interacting with coarsening defects

  • Yamada, M.;Hasebe, T.;Tomita, Y.;Onizawa, T.
    • Interaction and multiscale mechanics
    • /
    • v.1 no.4
    • /
    • pp.437-448
    • /
    • 2008
  • This paper examined the stability of high-dense dislocation substructures (HDDSs) associated with martensite laths in High Cr steels supposed to be used for FBR, based on a series of dislocation dynamics (DD) simulations. The DD simulations considered interactions of dislocations with impurity atoms and precipitates which substantially stabilize the structure. For simulating the dissociation processes, a point defect model is developed and implemented into a discrete DD code. Wall structure composed of high dense dislocations with and without small precipitates were artificially constructed in a simulation cell, and the stability/instability conditions of the walls were systematically investigated in the light of experimentally observed coarsening behavior of the precipitates, i.e., stress dependency of the coarsening rate and the effect of external stress. The effect of stress-dependent coarsening of the precipitates together with application of external stress on the subsequent behavior of initially stabilized dislocation structures was examined.

DFT Study for p-tert-Butylcalix[4]arene Crown Ether Bridged at the Lower Rim with Pyridyl Unit Complexed with Potassium Ion

  • Choe, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2310-2314
    • /
    • 2007
  • Stable molecular conformations were calculated for the p-tert-butylcalix[4]arene crown ether bridged at the lower rim with pyridyl unit (1) in the various conformers and their potassium-ion complexes. The structures of three distinct conformations have been optimized using DFT B3LYP/6-31G(d,p) method. Relative stability of free host 1 is in following order: cone (most stable) > partial-cone > 1,3-alternate conformer. For two different kinds of complexation mode, the potassium cation in the crown-ether moiety (cr) has much better complexation efficiency than in the benzene-rings (bz) pocket for all three kinds of conformation of host molecule 1. The relative stability of complex (1+K+) in the cr-binding mode is in following order: partial-cone (most stable) ~ cone > 1,3-alternate conformer.

Evaluation of Residual Stresses in 12%-Cr Steel Friction Stir Welds by the Eigenstrain Reconstruction Method

  • Jun, Tea-Sung;Korsunsky, Alexander M.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.15-22
    • /
    • 2015
  • In the present paper we report the results of a study into Friction Stir Welds (FSWs) made in 13 mm-thick 12%-Cr steel plates. Based on residual strains obtained by diffraction techniques, eigenstrain analysis was performed using the Eigenstrain Reconstruction Method (ERM), which is a novel methodology for the reconstruction of full-field residual strain and stress distributions within engineering components. Significant eigenstrain distributions were found at around Thermo-Mechanically Affected Zone (TMAZ) where the most severe plastic deformation was occurred. Microstructure analysis was used to elucidate this phenomenon showing that the grain structure in TMAZ was bent and not successfully recrystallised, resulting in severe deformation behaviour. The reconstructed residual strain distributions by the ERM agree well with the experimental results. It was found that the approach based on theory of eigenstrain is a powerful basis for reconstructing the full-field residual strain/stress distributions in engineering components and structures.

Magnetic Domain Structures with Substrate Temperatures in Co-22%Cr Alloy Thin Films (자가정렬형 나노구조 Co-22%Cr합금 박막의 기판온도에 따른 미세 도메인 구호)

  • 송오성
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.5
    • /
    • pp.184-188
    • /
    • 2001
  • Using a DC-sputter and changing the substrate temperature to room temperature and 200$\^{C}$, we manufactured each Co-22%Cr alloy thin-films, which has a uniform micro-structure at room temperature, and a fine self-organized nato structure (SONS) at the inside of the grain at the elevated temperature. We also investigated the microstructure and domain structure using a transmission electron microscope (TEM) and a magnetic force microscope (MFM). We managed to corrode selectively Co-enriched phase, then investigate the microstructure using a TEM. We found that it has a uniform composition when it is manufactured at room temperature, but, we found that it has a unique microstructure, which has a plate-like fine Co-enriched phase, with the formation of SONS at the inside of the grain at the elevated temperature. In MFM characterization, we found maze-type domains at the period of 5000 when the substrate temperature maintains at room temperature. We define that the maze-type domain has a disadvantage at the high density recording because it generates noises easily as the exchange coupling energy between the grains is big. On the other hand, there is only a fine domain structure at the period of 500 when the substrate temperature maintains at 200 $\^{C}$. We define that the fine domain structure has an advantage at the high density magnetic recording because it has thermal stability due to small exchange coupling energy.

  • PDF

Controlled Surface Functionalities of metals using Femtosecond Laser-induced Nano- and Micro-scale Surface Structures (펨토초 레이저 유도 나노 및 마이크로 구조물을 활용한 금속 표면 기능성 제어)

  • Taehoon Park;Hyo Soo Lee;Hai Joong Lee;Taek Yong Hwang
    • Design & Manufacturing
    • /
    • v.17 no.2
    • /
    • pp.55-61
    • /
    • 2023
  • With femtosecond (fs) laser pulse irradiation on metals, various types of nano- and micro-scale structures can be naturally induced at the surface through laser-matter interaction. Two notable structures are laser-induced periodic surface structures (LIPSSs) and cone/spike structures, which are known to significantly modify the optical and physical properties of metal surfaces. In this work, we irradiate fs laser pulses onto various types of metals, cold-rolled steel, pickled & oiled steel, Fe-18Cr-8Ni alloy, Zn-Mg-Al alloy coated steel, and pure Cu which can be useful for precise molding and imprinting processes, and adjust the morphological profiles of LIPSSs and cone/spike structures for clear structural coloration and a larger range of surface wettability control, respectively, by changing the fluence of laser and the speed of raster scan. The periods of LIPSSs on metals used in our experiments are nearly independent of laser fluence. Accordingly, the structural coloration of the surface with LIPSSs can be optimized with the morphological profile of LIPSSs, controlled only by the speed of the raster scan once the laser fluence is determined for each metal sample. However, different from LIPSSs, we demonstrate that the morphological profiles of the cone/spike structures, including their size, shape, and density, can be manipulated with both the laser fluence and the raster scan speed to increase a change in the contact angle. By injection molding and imprinting processes, it is expected that fs laser-induced surface structures on metals can be replicated to the plastic surfaces and potentially beneficial to control the optical and wetting properties of the surface of injection molded and imprinted products.

IC Thermal Management Using Microchannel Liquid Cooling Structure with Various Metal Bumps (금속 범프와 마이크로 채널 액체 냉각 구조를 이용한 소자의 열 관리 연구)

  • Won, Yonghyun;Kim, Sungdong;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.2
    • /
    • pp.73-78
    • /
    • 2016
  • An increase in the transistor density of integrated circuit devices leads to a very high increase in heat dissipation density, which causes a long-term reliability and various thermal problems in microelectronics. In this study, liquid cooling method was investigated using straight microchannels with various metal bumps. Microchannels were fabricated on Si wafer using deep reactive ion etching (DRIE), and Ag, Cu, or Cr/Au/Cu metal bumps were placed on Si wafer by a screen printing method. The surface temperature of liquid cooling structures with various metal bumps was measured by infrared (IR) microscopy. For liquid cooling with Cr/Au/Cu bumps, the surface temperature difference before and after liquid cooling was $45.2^{\circ}C$ and the power density drop was $2.8W/cm^2$ at $200^{\circ}C$ heating temperature.

ALD-assisted Hybrid Processes for improved Corrosion Resistance of Hard coatings

  • Wan, Zhixin;Kwon, Se-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.105-105
    • /
    • 2016
  • Recently, high power impulse magnetron sputtering (HIPIMS) has attracted considerable attentions due to its high potential for industrial applications. By pulsing the sputtering target with high power density and short duration pulses, a high plasma density and high ionization of the sputtered species can be obtained. HIPIMS has exhibited several merits such as increased coating density, good adhesion, microparticle-free and smooth surface, which make the HIPIMS technique desirable for synthesizing hard coatings. However, hard coatings present intrinsic defects (columnar structures, pinholes, pores, discontinuities) which can affect the corrosion behavior, especially when substrates are active alloys like steel or in a wear-corrosion process. Atomic layer deposition (ALD), a CVD derived method with a broad spectrum of applications, has shown great potential for corrosion protection of high-precision metallic parts or systems. In ALD deposition, the growth proceeds through cyclic repetition of self-limiting surface reactions, which leads to the thin films possess high quality, low defect density, uniformity, low-temperature processing and exquisite thickness control. These merits make ALD an ideal candidate for the fabrication of excellent oxide barrier layer which can block the pinhole and other defects left in the coating structure to improve the corrosion protection of hard coatings. In this work, CrN/Al2O3/CrN multilayered coatings were synthesized by a hybrid process of HIPIMS and ALD techniques, aiming to improve the CrN hard coating properties. The influence of the Al2O3 interlayer addition, the thickness and intercalation position of the Al2O3 layer in the coatings on the microstructure, surface roughness, mechanical properties and corrosion behaviors were investigated. The results indicated that the dense Al2O3 interlayer addition by ALD lead to a significant decrease of the average grain size and surface roughness and greatly improved the mechanical properties and corrosion resistance of the CrN coatings. The thickness increase of the Al2O3 layer and intercalation position change to near the coating surface resulted in improved mechanical properties and corrosion resistance. The mechanism can be explained by that the dense Al2O3 interlayer acted as an excellent barrier for dislocation motion and diffusion of the corrosive substance.

  • PDF