• Title/Summary/Keyword: CQF

Search Result 2, Processing Time 0.017 seconds

An MCFQ I/O Scheduler Considering Virtual Machine Bandwidth Distribution

  • Park, Jung Kyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.10
    • /
    • pp.91-97
    • /
    • 2015
  • In this paper, we propose a MCFQ I/O scheduler that is implemented by modifying the existing Linux CFQ I/O scheduler. MCFQ observes whether the user requested I/O bandwidth weight is well distributed. Based on the I/O bandwidth observation, we improved I/O performance of the existing bandwidth distribution ability by dynamically controlling the I/O time-slice of the virtual machine. The use of SSDs as storage has been increasing dramatically in recent computer systems due to their fast performance and low power usage. As the usage of SSD increases and prices fall, virtualized system administrators can take advantage of SSDs. However, studies on guaranteeing SLA(Service Level Agreement) services when multiple virtual machines share the SSD is still incomplete. In this paper was conducted to improve performance of the bandwidth distribution when multiple virtual machine are sharing a single SSD storage in a virtualized environment. In particular, it was observed that the performance of the bandwidth distribution varied widely when garbage collection occurs in the SSD. In order to reduce performance variance, we add a MoTS(Manager of Time Slice) on existing CFQ I/O scheduler.

Curved-quartic-function elements with end-springs in series for direct analysis of steel frames

  • Liu, Si-Wei;Chan, Jake Lok Yan;Bai, Rui;Chan, Siu-Lai
    • Steel and Composite Structures
    • /
    • v.29 no.5
    • /
    • pp.623-633
    • /
    • 2018
  • A robust element is essential for successful design of steel frames with Direct analysis (DA) method. To this end, an innovative and efficient curved-quartic-function (CQF) beam-column element using the fourth-order polynomial shape function with end-springs in series is proposed for practical applications of DA. The member initial imperfection is explicitly integrated into the element formulation, and, therefore, the P-${\delta}$ effect can be directly captured in the analysis. The series of zero-length springs are placed at the element ends to model the effects of semi-rigid joints and material yielding. One-element-per-member model is adopted for design bringing considerable savings in computer expense. The incremental secant stiffness method allowing for large deflections is used to describe the kinematic motion. Finally, several problems are studied in this paper for examining and validating the accuracy of the present formulations. The proposed element is believed to make DA simpler to use than existing elements, which is essential for its successful and widespread adoption by engineers.