• Title/Summary/Keyword: CPW(coplanar waveguide)

Search Result 174, Processing Time 0.016 seconds

A 2 GHz Compact Analog Phase Shifter with a Linear Phase-Tune Characteristic (2 GHz 선형 위상 천이 특성을 갖는 소형 아날로그 위상천이기)

  • Oh, Hyun-Seok;Choi, Jae-Hong;Jeong, Hae-Chang;Heo, Yun-Seong;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.1
    • /
    • pp.114-124
    • /
    • 2011
  • In this paper, we present a 2 GHz compact analog phase shifter with linear phase-tune characteristic. The compact phase shifter was designed base on a lumped all pass network and implemented using a ceramic substrate fabricated with thin-film technique. For a linear phase-tune characteristic, a capacitance of the varactor diode for a tuning voltage was linearized by connecting series capacitor and subsequently produced an almost linear capacitance change. The inductor and bias circuit in the all pass network was implemented using a spiral inductors for small size, which results in the size reduction to $4\;mm{\times}4\;mm$. In order to measure the phase shifter using the probe station, two CPW pads are included at the input and output. The fabricated phase shifter showed an insertion loss of about 4.2~4.7 dB at 2 GHz band and a total $79^{\circ}$ phase change for DC control voltage from 0 to 5 V, and showed linear phase-tune characteristic as expected in the design.

Prediction of Noise Power Disturbance from Antenna to Transmission Line System (안테나로부터 인접 전송선로에 전달되는 노이즈 전력 예측)

  • Ryu, Soojung;Jeon, Jiwoon;Kim, Kwangho;Jo, Jeongmin;Lee, Seungbae;Kim, SoYoung;Nah, Wansoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.11
    • /
    • pp.1172-1182
    • /
    • 2014
  • In these days, many kinds of goods are more light and more integrated. As frequency range of mobile applications have increased to improve performance of antenna furthermore, EMI(ElectroMagnetic Interference) problem has frequently caused by disturbance of antenna in device which aggravates other circuit. This paper proposes a technique for the prediction of noise power to the transmission line from antenna located near the line. Although noise power transferred to transmission line is varied by source impedance of antenna and load impedance of transmission line basically, the power magnitude can be presented in a square form of S-parameter between antenna and transmission line due to small variation of transferred power. For this reason, we can use the index expressed the transferred power varied along geometrical shapes of transmission line. As a result, big difference is occurred along location of antenna especially the bended line. And this such experiment is correspond with simulation, these results have meaning physically considering electromagnetic field distribution in near and far field. HFSS of Ansys and CPW with ground is used in this paper.

Design of a Low Phase Noise Vt-DRO Based on Improvement of Dielectric Resonator Coupling Structure (유전체 공진기 결합 구조 개선을 통한 저위상 잡음 전압 제어 유전체 공진기 발진기 설계)

  • Son, Beom-Ik;Jeong, Hae-Chang;Lee, Seok-Jeong;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.6
    • /
    • pp.691-699
    • /
    • 2012
  • In this paper, we present a Vt-DRO with a low phase noise, which is achieved by improving the coupling structure between the dielectric resonator and microstrip line. The Vt-DRO is a closed-loop type and is composed of 3 blocks; dielectric resonator, phase shifter, and amplifier. We propose a mathematical estimation method of phase noise, using the group delay of the resonator. By modifying the coupling structure between the dielectric resonator and microstrip line, we achieved a group delay of 53 nsec. For convenience of measurement, wafer probes were inserted at each stage to measure the S-parameters of each block. The measured S-parameter of the Vt-DRO satisfies the open-loop oscillation condition. The Vt-DRO was implemented by connecting the input and output of the designed open-loop to form a closed-loop. As a result, the phase noise of the Vt-DRO was measured as -132.7 dBc/Hz(@ 100 kHz offset frequency), which approximates the predicted result at the center frequency of 5.3 GHz. The tuning-range of the Vt-DRO is about 5 MHz for tuning voltage of 0~10 V and the power is 4.5 dBm. PFTN-FOM is -31 dBm.

High Conversion Gain and Isolation Characteristic V-band Quadruple Sub-harmonic Mixer (고 변환이득 및 격리 특성의 V-band용 4체배 Sub-harmonic Mixer)

  • Uhm, Won-Young;Sul, Woo-Suk;Han, Hyo-Jong;Kim, Sung-Chan;Lee, Han-Shin;An, Dan;Kim, Sam-Dong;Park, Hyung-Moo;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.7
    • /
    • pp.293-299
    • /
    • 2003
  • In this paper, we have proposed a high conversion and isolation characteristic V-band quadruple sub-harmonic mixer monolithic circuit which is designed and fabricated for the millimeter wave down converter applications. While most of the sub-harmonic mixers use a half of fundamental frequency, we adopt a quarter of the fundamental frequency. The proposed circuit is based on a sub-harmonic mixer with APDP(anti-parallel diode pair) and the 0.1 ${\mu}{\textrm}{m}$ PHEMT's (pseudomorphic high electron mobility transistors). Lumped elements at IF port provide better selectivity of IF frequency and increase isolation. Maximum conversion gain of 0.8 ㏈ at a LO frequency of 14.5㎓ and at a RF frequency of 60.4 ㎓ is measured. Both LO-to-RF and LO-to-IF isolations are higher than 50 ㏈. The conversion gain and isolation characteristic are the best performances among the reported quadruple sub-harmonic mixer operating in the V-band millimeter wave frequency thus far.