• Title/Summary/Keyword: CPU Processing Time

Search Result 332, Processing Time 0.028 seconds

Fast Visualization Technique and Visual Analytics System for Real-time Analyzing Stream Data (실시간 스트림 데이터 분석을 위한 시각화 가속 기술 및 시각적 분석 시스템)

  • Jeong, Seongmin;Yeon, Hanbyul;Jeong, Daekyo;Yoo, Sangbong;Kim, Seokyeon;Jang, Yun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.22 no.4
    • /
    • pp.21-30
    • /
    • 2016
  • Risk management system should be able to support a decision making within a short time to analyze stream data in real time. Many analytical systems consist of CPU computation and disk based database. However, it is more problematic when existing system analyzes stream data in real time. Stream data has various production periods from 1ms to 1 hour, 1day. One sensor generates small data but tens of thousands sensors generate huge amount of data. If hundreds of thousands sensors generate 1GB data per second, CPU based system cannot analyze the data in real time. For this reason, it requires fast processing speed and scalability for analyze stream data. In this paper, we present a fast visualization technique that consists of hybrid database and GPU computation. In order to evaluate our technique, we demonstrate a visual analytics system that analyzes pipeline leak using sensor and tweet data.

Priority-based Group Task Scheduling Policy for a Multiplayer Real-time Game Server (다중사용자용 실시간 게임 서버를 위한 우선순위 기반 그룹 태스크 스케쥴링 정책)

  • Kim, Jin-Hwan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.57-64
    • /
    • 2012
  • Multiplayer, real-time games are a kind of soft real-time systems because a game server has to respond to requests from many clients within specified time constraints. Client events have different timeliness and consistency requirements according to their nature in the game world. These requirements lead to different priorities on CPU processing. Events can be divided into different groups, depending on their consistency degree and priority. To handle these events with different priority and meet their timing constraints, we propose a priority-based group task scheduling policy in this paper. The number of clients or events requested by each client may be increased temporarily. In the presence of transient overloading, the game server needs to allocate more CPU bandwidth to serve an event with the higher priority level preferentially. The proposed scheduling policy is capable of enhancing real-time performance of the entire system by maximizing the number of events with higher priority completed successfully within their deadlines. The performance of this policy is evaluated through extensive simulation experiments.

Simulation of Deformable Objects using GLSL 4.3

  • Sung, Nak-Jun;Hong, Min;Lee, Seung-Hyun;Choi, Yoo-Joo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.8
    • /
    • pp.4120-4132
    • /
    • 2017
  • In this research, we implement a deformable object simulation system using OpenGL's shader language, GLSL4.3. Deformable object simulation is implemented by using volumetric mass-spring system suitable for real-time simulation among the methods of deformable object simulation. The compute shader in GLSL 4.3 which helps to access the GPU resources, is used to parallelize the operations of existing deformable object simulation systems. The proposed system is implemented using a compute shader for parallel processing and it includes a bounding box-based collision detection solution. In general, the collision detection is one of severe computing bottlenecks in simulation of multiple deformable objects. In order to validate an efficiency of the system, we performed the experiments using the 3D volumetric objects. We compared the performance of multiple deformable object simulations between CPU and GPU to analyze the effectiveness of parallel processing using GLSL. Moreover, we measured the computation time of bounding box-based collision detection to show that collision detection can be processed in real-time. The experiments using 3D volumetric models with 10K faces showed the GPU-based parallel simulation improves performance by 98% over the CPU-based simulation, and the overall steps including collision detection and rendering could be processed in real-time frame rate of 218.11 FPS.

Spark Framework Based on a Heterogenous Pipeline Computing with OpenCL (OpenCL을 활용한 이기종 파이프라인 컴퓨팅 기반 Spark 프레임워크)

  • Kim, Daehee;Park, Neungsoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.270-276
    • /
    • 2018
  • Apache Spark is one of the high performance in-memory computing frameworks for big-data processing. Recently, to improve the performance, general-purpose computing on graphics processing unit(GPGPU) is adapted to Apache Spark framework. Previous Spark-GPGPU frameworks focus on overcoming the difficulty of an implementation resulting from the difference between the computation environment of GPGPU and Spark framework. In this paper, we propose a Spark framework based on a heterogenous pipeline computing with OpenCL to further improve the performance. The proposed framework overlaps the Java-to-Native memory copies of CPU with CPU-GPU communications(DMA) and GPU kernel computations to hide the CPU idle time. Also, CPU-GPU communication buffers are implemented with switching dual buffers, which reduce the mapped memory region resulting in decreasing memory mapping overhead. Experimental results showed that the proposed Spark framework based on a heterogenous pipeline computing with OpenCL had up to 2.13 times faster than the previous Spark framework using OpenCL.

A Study on the Efficiency of ASTC Texture Format in Mobile Game Environment (모바일 게임 환경의 ASTC 텍스쳐 포맷 효용성 연구)

  • Hong, Seong-Chan;Kim, Tae-Gyu;Jung, Won-Joe
    • Journal of Korea Game Society
    • /
    • v.19 no.6
    • /
    • pp.91-98
    • /
    • 2019
  • This study verified the memory occupancy, CPU processing speed, and average frame comparison of texture formats of ASTC and ETC in mobile Android OS. The virtual game scene was implemented as an experimental environment and built on the Android platform. Based on this, comparative verification data was extracted. ASTC has a 36% lower share of memory usage of 2D textures than ETC. CPU processing speed was 18% faster. The average frame confirmed 54 frames that was 58% higher. In the smart mobile game environment, ASTC confirmed the result of comparative advantage over ETC.

High Throughput Parallel KMP Algorithm Considering CPU-GPU Memory Hierarchy (CPU-GPU 메모리 계층을 고려한 고처리율 병렬 KMP 알고리즘)

  • Park, Soeun;Kim, Daehee;Lee, Myungho;Park, Neungsoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.5
    • /
    • pp.656-662
    • /
    • 2018
  • Pattern matching algorithm is widely used in many application fields such as bio-informatics, intrusion detection, etc. Among many string matching algorithms, KMP (Knuth-Morris-Pratt) algorithm is commonly used because of its fast execution time when using large texts. However, the processing speed of KMP algorithm is also limited when the text size increases significantly. In this paper, we propose a high throughput parallel KMP algorithm considering CPU-GPU memory hierarchy based on OpenCL in GPGPU (General Purpose computing on Graphic Processing Unit). We focus on the optimization for the allocation of work-times and work-groups, the local memory copy of the pattern data and the failure table, and the overlapping of the data transfer with the string matching operations. The experimental results show that the execution time of the optimized parallel KMP algorithm is about 3.6 times faster than that of the non-optimized parallel KMP algorithm.

Assessment of Parallel Computing Performance of Agisoft Metashape for Orthomosaic Generation (정사모자이크 제작을 위한 Agisoft Metashape의 병렬처리 성능 평가)

  • Han, Soohee;Hong, Chang-Ki
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.427-434
    • /
    • 2019
  • In the present study, we assessed the parallel computing performance of Agisoft Metashape for orthomosaic generation, which can implement aerial triangulation, generate a three-dimensional point cloud, and make an orthomosaic based on SfM (Structure from Motion) technology. Due to the nature of SfM, most of the time is spent on Align photos, which runs as a relative orientation, and Build dense cloud, which generates a three-dimensional point cloud. Metashape can parallelize the two processes by using multi-cores of CPU (Central Processing Unit) and GPU (Graphics Processing Unit). An orthomosaic was created from large UAV (Unmanned Aerial Vehicle) images by six conditions combined by three parallel methods (CPU only, GPU only, and CPU + GPU) and two operating systems (Windows and Linux). To assess the consistency of the results of the conditions, RMSE (Root Mean Square Error) of aerial triangulation was measured using ground control points which were automatically detected on the images without human intervention. The results of orthomosaic generation from 521 UAV images of 42.2 million pixels showed that the combination of CPU and GPU showed the best performance using the present system, and Linux showed better performance than Windows in all conditions. However, the RMSE values of aerial triangulation revealed a slight difference within an error range among the combinations. Therefore, Metashape seems to leave things to be desired so that the consistency is obtained regardless of parallel methods and operating systems.

Implementation of Pedestrian Detection and Tracking with GPU at Night-time (GPU를 이용한 야간 보행자 검출과 추적 시스템 구현)

  • Choi, Beom-Joon;Yoon, Byung-Woo;Song, Jong-Kwan;Park, Jangsik
    • Journal of Broadcast Engineering
    • /
    • v.20 no.3
    • /
    • pp.421-429
    • /
    • 2015
  • This paper is about an approach for pedestrian detection and tracking with infrared imagery. We used the CUDA(Computer Unified Device Architecture) that is a parallel processing language in order to improve the speed of video-based pedestrian detection and tracking. The detection phase is performed by Adaboost algorithm based on Haar-like features. Adaboost classifier is trained with datasets generated from infrared images. After detecting the pedestrian with the Adaboost classifier, we proposed a particle filter tracking strategies on HSV histogram feature that exploit adaptively at the same time. The proposed approach is implemented on an NVIDIA Jetson TK1 developer board that is full-featured device ideal for software development within the Linux environment. In this paper, we presented the results of parallel processing with the NVIDIA GPU on the CUDA development environment for detection and tracking of pedestrians. We compared the object detection and tracking processing time for night-time images on both GPU and CPU. The result showed that the detection and tracking speed of the pedestrian with GPU is approximately 6 times faster than that for CPU.

GPU Acceleration of Range Doppler Algorithm for Real-Time SAR Image Generation (실시간 SAR 영상 생성을 위한 Range Doppler Algorithm의 GPU 가속)

  • Dong-Min Jeong;Woo-Kyung Lee;Myeong-Jin Lee;Yun-Ho Jung
    • Journal of IKEEE
    • /
    • v.27 no.3
    • /
    • pp.265-272
    • /
    • 2023
  • In this paper, a GPU-accelerated kernel of range Doppler algorithm (RDA) was developed for real-time image formation based on frequency modulated continuous wave (FMCW) synthetic aperture radar (SAR). A pinned memory was used to minimize the data transfer time between the host and the GPU device, and the kernel was configured to perform all RDA operations on the GPU to minimize the number of data transfers. The dataset was obtained through the FMCW drone SAR experiment, and the GPU acceleration effect was measured in an intel i7-9700K CPU, 32GB RAM, and Nvidia RTX 3090 GPU environment. Including the data transfer time between host and devices, it was measured to be accelerated up to 3.41 times compared to the CPU, and when only the acceleration effect of operation was measured without including the data transfer time, it was confirmed that it could be accelerated up to 156 times.

Real-time signal processing of LADAR image (LADAR 영상의 실시간 신호 처리)

  • Ha, Choong-lim;Nam, Jai-du;Kim, Young-kil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.387-390
    • /
    • 2017
  • With the advent of high-resolution sensors in the embedded field, the demand for heterogeneous computing continues to increase. Logic Module is an embedded system for controlling LADAR system components and for real-time 3D imaging of laser radar image data. In this paper, we discuss the design of Logic Module and the signal processing using CPU-GPU heterogeneous computing.

  • PDF