• Title/Summary/Keyword: CPS(Cyber Physical Systems)

Search Result 76, Processing Time 0.026 seconds

An ETRI CPS Modeling Language for Specifying Hybrid Systems (하이브리드 시스템을 명세하기 위한 ETRI CPS 모델링 언어)

  • Yoon, Sanghyun;Chun, In-geol;Kim, Won-Tae;Jo, Jaeyeon;Yoo, Junbeom
    • Journal of KIISE
    • /
    • v.42 no.7
    • /
    • pp.823-833
    • /
    • 2015
  • Hybrid system is a dynamic system that is composed of both a continuous and discrete system, suitable for automobile, avionic and defense systems. Various modeling languages and their supporting tools have been proposed and used in the hybrid system. The languages and tools have specific characteristics for their purpose. Electronics and Telecommunications Research Institute (ETRI) proposed a hybrid system modeling language, ECML (ETRI CPS Modeling Language). ECML extends DEV&DESS (Differential Event and Differential Equation Specified System) formalism with consideration of CPS (Cyber-Physical System), which supports modeling and simulation. In this paper, we introduce ECML and suggest a formal definition. The case study specifies a simple vehicle model using the suggested formal definition.

Securing Safety in Collaborative Cyber-Physical Systems Through Fault Criticality Analysis (협업 사이버물리시스템의 결함 치명도 분석을 통한 안전성 확보)

  • Hussain, Manzoor;Ali, Nazakat;Hong, Jang-Eui
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.8
    • /
    • pp.287-300
    • /
    • 2021
  • Collaborative Cyber-Physical Systems (CCPS) are those systems that contain tightly coupled physical and cyber components, massively interconnected subsystems, and collaborate to achieve a common goal. The safety of a single Cyber-Physical System (CPS) can be achieved by following the safety standards such as ISO 26262 and IEC 61508 or by applying hazard analysis techniques. However, due to the complex, highly interconnected, heterogeneous, and collaborative nature of CCPS, a fault in one CPS's components can trigger many other faults in other collaborating CPSs. Therefore, a safety assurance technique based on fault criticality analysis would require to ensure safety in CCPS. This paper presents a Fault Criticality Matrix (FCM) implemented in our tool called CPSTracer, which contains several data such as identified fault, fault criticality, safety guard, etc. The proposed FCM is based on composite hazard analysis and content-based relationships among the hazard analysis artifacts, and ensures that the safety guard controls the identified faults at design time; thus, we can effectively manage and control the fault at the design phase to ensure the safe development of CPSs. To justify our approach, we introduce a case study on the Platooning system (a collaborative CPS). We perform the criticality analysis of the Platooning system using FCM in our developed tool. After the detailed fault criticality analysis, we investigate the results to check the appropriateness and effectiveness with two research questions. Also, by performing simulation for the Platooning, we showed that the rate of collision of the Platooning system without using FCM was quite high as compared to the rate of collisions of the system after analyzing the fault criticality using FCM.

Design of CPS Architecture for Ultra Low Latency Control (초저지연 제어를 위한 CPS 아키텍처 설계)

  • Kang, Sungjoo;Jeon, Jaeho;Lee, Junhee;Ha, Sujung;Chun, Ingeol
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.5
    • /
    • pp.227-237
    • /
    • 2019
  • Ultra-low latency control is one of the characteristics of 5G cellular network services, which means that the control loop is handled in milliseconds. To achieve this, it is necessary to identify time delay factors that occur in all components related to CPS control loop, including new 5G cellular network elements such as MEC, and to optimize CPS control loop in real time. In this paper, a novel CPS architecture for ultra-low latency control of CPS is designed. We first define the ultra-low latency characteristics of CPS and the CPS concept model, and then propose the design of the control loop performance monitor (CLPM) to manage the timing information of CPS control loop. Finally, a case study of MEC-based implementation of ultra-low latency CPS reviews the feasibility of future applications.

Efficient Data Distribution Service in CPS (CPS에서 효율적인 데이터분배 기술)

  • Lee, Soo-Hyung;Kim, Won-Tae;Ryou, Jae-Cheol
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.7 no.5
    • /
    • pp.241-246
    • /
    • 2012
  • As the convergence between the conventional physical systems and IT computing resource is increased, the new paradigm of embedded system called Cyber Physical System (CPS) emerged. CPSs have many sensors, actuators and computing devices to understand and to control the physical system. As these all components are tightly coupled each other, standardized middleware such as Data Distribution Service (DDS) is considered to be deployed. But DDS takes too long time to discover each other in the large-scal CPS environment and has not precise specification of its execution architecture to provide efficient data exchange. In this paper, we design the efficient DDS architecture for development with interoperability to provide the high reliable data distribution. in real-time and propose the communication entity discovery procedure.

Production Equipment Monitoring System Based on Cloud Computing for Machine Manufacturing Tools

  • Kim, Sungun;Yu, Heung-Sik
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.2
    • /
    • pp.197-205
    • /
    • 2022
  • The Cyber Physical System(CPS) is an important concept in achieving SMSs(Smart Manufacturing Systems). Generally, CPS consists of physical and virtual elements. The former involves manufacturing devices in the field space, whereas the latter includes the technologies such as network, data collection and analysis, security, and monitoring and control technologies in the cyber space. Currently, all these elements are being integrated for achieving SMSs in which we can control and analyze various kinds of producing and diagnostic issues in the cyber space without the need for human intervention. In this study, we focus on implementing a production equipment monitoring system related to building a SMS. First, we describe the development of a fog-based gateway system that links physical manufacturing devices with virtual elements. This system also interacts with the cloud server in a multimedia network environment. Second, we explain the proposed network infrastructure to implement a monitoring system operating on a cloud server. Then, we discuss our monitoring applications, and explain the experience of how to apply the ML(Machine Learning) method for predictive diagnostics.

Autonomic Computing for Cyber Physical Systems (사이버 물리 시스템을 위한 자율 컴퓨팅)

  • Yoo, Giljong;Lee, Eunseok
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.11a
    • /
    • pp.185-186
    • /
    • 2009
  • 오늘날 분산 컴퓨팅 환경은 유비쿼터스 컴퓨팅 기술을 요구하고 있다. 미국의 경우 최근 몇 년간 CPS에 대한 개념을 도입하여 차세대 임베디드 산업에 대한 새로운 패러다임을 제시하였고, 유비쿼터스 기술은 CPS 기술의 형태로 변화되기 시작하였다. 여기에 더해 실시간의 컴퓨팅 관리와 사용을 위해 자율 컴퓨팅 기술이 필요하며 기존과 달리 CPS 형 자율 컴퓨팅이 요구되고 있다. 본 논문은 기존의 분산 컴퓨팅과 CPS 컴퓨팅에서의 자율 컴퓨팅 요구를 소개하였다. 따라서 CPS 환경을 위해 주목해야 할 요소 기술들을 정리하였다.

Demystifying the Definition of Digital Twin for Built Environment

  • Davari, Saman;Shahinmoghadam, Mehrzad;Motamedi, Ali;Poirier, Erik
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1122-1129
    • /
    • 2022
  • The concept of Digital Twin (DT) has been receiving an increasing amount of attention in the construction management and building engineering research domains. Although the benefits of DT are evident, confusion with regards to the concept of DTs and its relationship with others such as Cyber-Physical Systems (CPS), Building Information Modelling (BIM) and Internet of Things (IoT) remains. This paper aims to help allay this confusion through an in-depth analysis of the definition of DT and its unique characteristics. As such, a review of the past and current definitions of DT and CPS in various domains is performed. An analysis is then conducted to identify the overlaps between the definition of DT with CPS, as well as with BIM and IoT. Finally, given the relatively closer resemblances between DT and CPS, a set of four distinct dimensions enabling their comparative analysis and highlighting their shared and unique characteristics is discussed. This paper contributes to the existing literature by exploring the definition of DT and presenting two original conceptualizations that help further refine the concept of DT in the construction and management and building engineering domain.

  • PDF

Development of Cyber Physical Systems(CPS) in Manufacturing using Asset Administration Shell(AAS) (자산관리쉘(AAS)을 이용한 제조 분야 가상 물리시스템(CPS)개발)

  • Woohyun Park;Jaehyun Kim;Kichang Park;Yongkwan Lee;Jeong Joon Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.305-307
    • /
    • 2023
  • 현재 제조업에서 설비 라인 증축 및 최적화를 위해서는 공정 분석과 설비 시스템 테스트가 요구되며, 많은 시간과 비용이 소요된다. 이러한 문제를 해결하기 위해, 가상의 설비모델을 이용해 설비검증과 라인 테스트를 수행할 수 있는 다양한 CPS(Cyber Physical System)가 연구되고 있다. 본 논문에서는 다양한 설비 이해관계자 사이의 상호운용성을 확보하기 위해 독일의 Industry 4.0에서 제안한 표준 설비 명세인 AAS(Asset Administration Shell)를 활용한 CPS 구현을 제안한다. SMT(Surface Mounting Technology) 라인 중 Screen Printer를 대상으로, 총 3개의 서브 모델(Sub model)과 17개의 속성(Property)을 AAS 명세하고 이를 이용한 CPS를 구현하는 사례연구를 수행했다. 제안 방법은 표준명세를 활용한 제조 분야 CPS 구현에 적용될 수 있다.

Deadline-Aware Routing: Quality of Service Enhancement in Cyber-Physical Systems (사이버물리시스템 서비스 품질 향상을 위한 데드라인 인지 라우팅)

  • Son, Sunghwa;Jang, Byeong-Hoon;Park, Kyung-Joon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.7 no.9
    • /
    • pp.227-234
    • /
    • 2018
  • Guaranteeing the end-to-end delay deadline is an important issue for quality of service (QoS) of delay sensitive systems, such as real-time system, networked control system (NCS), and cyber-physical system (CPS). Most routing algorithms typically use the mean end-to-end delay as a performance metric and select a routing path that minimizes it to improve average performance. However, minimum mean delay is an insufficient routing metric to reflect the characteristics of the unpredictable wireless channel condition because it only represents average value. In this paper, we proposes a deadline-aware routing algorithm that maximizes the probability of packet arrival within a pre-specified deadline for CPS by considering the delay distribution rather than the mean delay. The proposed routing algorithm constructs the end-to-end delay distribution in a given network topology under the assumption of the single hop delay follows an exponential distribution. The simulation results show that the proposed routing algorithm can enhance QoS and improve networked control performance in CPS by providing a routing path which maximizes the probability of meeting the deadline.