• Title/Summary/Keyword: CPS(Cyber Physical Systems)

Search Result 76, Processing Time 0.023 seconds

The Study on the Cyber Security Requirements of Cyber-Physical Systems for Cyber Security Frameworks (사이버-물리 시스템의 보안 프레임워크 개발을 위한 보안 요구사항 분석 연구)

  • Park, Soo-Youl;Choi, Wook-Jin;Chung, Bo-Heung;Kim, Jeong-Nyeo;Kim, Joo-Man
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.7 no.5
    • /
    • pp.255-265
    • /
    • 2012
  • A cyber-physical system(CPS) is a collection of cyber and physical components that interact with each other to achieve a particular application. Here, the CPS is emerged the reliability and security problems. Particularly, the defect of reliability in the data/control transmission under the CPS can lead to serious damage. We discuss the reliability and security problem on CPS architecture. Then we would suggest the considerations of cyber security in industrial control systems built with CPS.

A Research on Designing an Autonomic Control System Towards High-Reliable Cyber-Physical Systems (고신뢰 CPS를 위한 자율제어 시스템에 관한 연구)

  • Park, Jeongmin;Kang, Sungjoo;Chun, Ingeol;Kim, Wontae
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.6
    • /
    • pp.347-357
    • /
    • 2013
  • Cyber-Physical system(CPS) is characterized by collaborating computational elements controlling physical entities. In CPS, human desire to acquire useful information and control devices anytime and anywhere automatically has increased the necessity of a high reliable system. However, the physical world where CPS is deployed has management complexity and maintenance cost of 'CPS', so that it is impossible to make reliable systems. Thus, this paper presents an 'Autonomic Control System towards High-reliable Cyber-Physical Systems' that comprise 8-steps including 'fault analysis', 'fault event analysis', 'fault modeling', 'fault state interpretation', 'fault strategy decision', 'fault detection', 'diagnosis&reasoning' and 'maneuver execution'. Through these activities, we fascinate to design and implement 'Autonomic control system' than before. As a proof of the approach, we used a ISR(Intelligent Service Robot) for case study. The experimental results show that it achieves to detect a fault event for autonomic control of 'CPS'.

Enhancing Cyber-Physical Systems Security: A Comprehensive SRE Approach for Robust CPS Methodology

  • Shafiq ur Rehman
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.5
    • /
    • pp.40-52
    • /
    • 2024
  • Cyber-Physical Systems (CPS) are introduced as complex, interconnected systems that combine physical components with computational elements and networking capabilities. They bridge the gap between the physical world and the digital world, enabling the monitoring and control of physical processes through embedded computing systems and networked communication. These systems introduce several security challenges. These challenges, if not addressed, can lead to vulnerabilities that may result in substantial losses. Therefore, it is crucial to thoroughly examine and address the security concerns associated with CPS to guarantee the safe and reliable operation of these systems. To handle these security concerns, different existing security requirements methods are considered but they were unable to produce required results because they were originally developed for software systems not for CPS and they are obsolete methods for CPS. In this paper, a Security Requirements Engineering Methodology for CPS (CPS-SREM) is proposed. A comparison of state-of-the-art methods (UMLSec, CLASP, SQUARE, SREP) and the proposed method is done and it has demonstrated that the proposed method performs better than existing SRE methods and enabling experts to uncover a broader spectrum of security requirements specific to CPS. Conclusion: The proposed method is also validated using a case study of the healthcare system and the results are promising. The proposed model will provide substantial advantages to both practitioners and researcher, assisting them in identifying the security requirements for CPS in Industry 4.0.

A Survey on Concepts, Applications, and Challenges in Cyber-Physical Systems

  • Gunes, Volkan;Peter, Steffen;Givargis, Tony;Vahid, Frank
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.12
    • /
    • pp.4242-4268
    • /
    • 2014
  • The Cyber-Physical System (CPS) is a term describing a broad range of complex, multi-disciplinary, physically-aware next generation engineered system that integrates embedded computing technologies (cyber part) into the physical world. In order to define and understand CPS more precisely, this article presents a detailed survey of the related work, discussing the origin of CPS, the relations to other research fields, prevalent concepts, and practical applications. Further, this article enumerates an extensive set of technical challenges and uses specific applications to elaborate and provide insight into each specific concept. CPS is a very broad research area and therefore has diverse applications spanning different scales. Additionally, the next generation technologies are expected to play an important role on CPS research. All of CPS applications need to be designed considering the cutting-edge technologies, necessary system-level requirements, and overall impact on the real world.

Study on Timing Failures in Cyber-Physical Systems

  • Kong, Joon-Ik
    • International journal of advanced smart convergence
    • /
    • v.11 no.3
    • /
    • pp.56-63
    • /
    • 2022
  • Cyber-physical systems (CPSs) can solve real problems by utilizing closely connected resources in the cyber world. Most problems arise because the physical world is uncertain and unpredictable. To address this uncertainty, information pouring from numerous devices must be collected in real-time, and each interconnected device must share the information. At this time, CPS must meet timing-related techniques and strict timing constraints that can deliver accurate information within predefined deadlines in order to interact closely beyond simply connecting the cyber and physical worlds. Timing errors in safety-critical systems, such as automobiles, aviation, and medical systems, can lead to catastrophic disasters. In this paper, we classify timing problems into two types: real-time delay and synchronization problems. The results of this study can be used in the entire process of CPS system design, implementation, operation, verification, and maintenance. As a result, it can contribute to securing the safety and reliability of CPS.

Development of a Real-time Simulation Technique for Cyber-physical System (사이버 물리 시스템을 위한 실시간 시뮬레이션 기술 개발)

  • Kim, Jiyeon;Kim, Hyung-Jong;Kang, Sungjoo
    • Journal of the Korea Society for Simulation
    • /
    • v.23 no.4
    • /
    • pp.181-188
    • /
    • 2014
  • Heterogeneous physical systems and computational devices are incorporated on a large-scale in a CPS (cyber-physical system) environment. Simulations can be useful for the reliable behaviors of CPSs. Time synchronization is one of major technical issues for the simulations. In the CPS, distributed systems control themselves by interacting with each other during runtime. When some simulation models have high complexity, wrong control commands as well as incorrect data can be exchanged due to the time error. We propose a time synchronization algorithm for the hybrid model that has characteristics of both continuous time systems and discrete event systems. In addition, we develop a CPS simulator based on our algorithm. For the verification of the algorithm and the execution of the simulator, we develop an example hybrid model and simulate considering user controls as well as interactions among the distributed systems.

네트워크 기반 자율제어 CPS(Cyber-Physical Systems)기술

  • Park, Jeong-Min;Gang, Seong-Ju;Jeon, In-Geol;Kim, Won-Tae
    • Information and Communications Magazine
    • /
    • v.30 no.10
    • /
    • pp.86-92
    • /
    • 2013
  • 사이버-물리 시스템(Cyber-Physical Systems, CPS)은 다수의 임베디드 시스템과 통신망 그리고 현실세계인 물리 시스템이 서로 밀접하게 연계되어 사용자가 필요로 하는 다양한 서비스를 제공하고 있다. 다양한 환경에서 동작하는 사이버-물리 시스템은 그 복잡성이 매우 크기 때문에 문제 발생에 대응하는 것이 쉽지 않다. 본고에서는 최근 IT 융합 연구 분야에서 많은 주목을 받고 있는 사이버-물리시스템(Cyber-Physical System, CPS)의 고신뢰성을 위한 '네트워크 기반 자율제어 CPS의 요소 기술'들에 대하여 알아본다.

CPS(Cyber Physical System) & Research Opportunities for MIS (CPS(Cyber Physical System)와 MIS의 연구기회 탐색)

  • Choi, Moo-Jin;Park, Jong-Pil
    • The Journal of Information Systems
    • /
    • v.26 no.4
    • /
    • pp.63-85
    • /
    • 2017
  • Purpose Recently, much attention in building smart factory has dramatically increased with an emergence of the Industry 4.0. As we noted a connectivity gap between main concerns of MIS and the automated manufacturing systems such as POP and MES, it is recommended that CPS (Cyber-Physical System) can be an important building block for the smart factory and enrich the depth of MIS knowledge. Therefore, first, this study attempted to identify the connectivity gap between the traditional field of MIS (ERP, SCM, CRM, etc.) and the automated manufacturing systems, and then recommended CPS as a technical bridge to fill the gap. Secondly, we studied concepts and research trend of CPS that is believed to be a virtual mechanism to manage manufacturing systems in an integrated manner. Finally, we suggested research and educational opportunities in MIS based on the CPS perspectives. Design/methodology/approach Since this paper introduced relatively new idea of CPS originally discussed in the field of engineering, traditional MIS research method such as survey and experiment may not fit well. Therefore this research collected technical cases through literature survey in engineering fields, video clips from Youtube, and field references from various ICT Exhibitions and Conventions. Then we analyzed and reorganized them to highlight the necessity of CPS and draw some insight to share with MIS academia. Findings This paper introduced CPS to bridge the connectivity gap between the traditional MIS and automated manufacturing system (smart factory), a concern far away from the MIS academia. Further, this paper suggested future research subjects of MIS such as developing software to share big production data and systems to support manufacturing decisions, and innovating MIS curricula including smart and intelligent manufacturing technology within the context of traditional enterprise systems.

A Research on Effective Cyber-Physical Systems Tests Using EcoHILS (EcoHILS를 활용한 효율적인 CPS 시험에 관한 연구)

  • Kim, Min-Jo;Kang, Sungjoo;Chun, In-Geol;Kim, Won-Tae
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.4
    • /
    • pp.211-217
    • /
    • 2014
  • Cyber-Physical Systems(CPS) that mostly provides safety-critical and mission-critical services requires high reliability, so that system testing is an essential and important process. Hardware-In-the-Loop Simulation(HILS) is one of the extensively used techniques for testing hardware systems. However, most conventional HILS has problems that it is difficult to support a distributed operating environment and to reuse a HILS platform. In this paper, we introduce EcoHILS(ETRI CPS Open Human-Interactive hardware-in-the-Loop Simulator) in order to test CPS effectively. Moreover, feasibility tests and performance tests of EcoHILS are performed to confirm its effectiveness.

A Survey on Cyber Physical System Security for IoT: Issues, Challenges, Threats, Solutions

  • Kim, Nam Yong;Rathore, Shailendra;Ryu, Jung Hyun;Park, Jin Ho;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1361-1384
    • /
    • 2018
  • Recently, Cyber Physical System (CPS) is one of the core technologies for realizing Internet of Things (IoT). The CPS is a new paradigm that seeks to converge the physical and cyber worlds in which we live. However, the CPS suffers from certain CPS issues that could directly threaten our lives, while the CPS environment, including its various layers, is related to on-the-spot threats, making it necessary to study CPS security. Therefore, a survey-based in-depth understanding of the vulnerabilities, threats, and attacks is required of CPS security and privacy for IoT. In this paper, we analyze security issues, threats, and solutions for IoT-CPS, and evaluate the existing researches. The CPS raises a number challenges through current security markets and security issues. The study also addresses the CPS vulnerabilities and attacks and derives challenges. Finally, we recommend solutions for each system of CPS security threats, and discuss ways of resolving potential future issues.