• Title/Summary/Keyword: CP-ABE

Search Result 30, Processing Time 0.026 seconds

Ciphertext Policy-Attribute Based Encryption with Non Monotonic Access Structures (비단조 접근 구조를 갖는 CP-ABE 방식)

  • Sadikin, Rifki;Moon, SangJae;Park, YoungHo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.9
    • /
    • pp.21-31
    • /
    • 2013
  • A ciphertext policy-attribute based encryption(CP-ABE) scheme can be used to realize access control mechanism without a trusted server. We propose an attribute-based access control mechanism by incorporating a CP-ABE scheme to ensure only authorized users can access the sensitive data. The idea of CP-ABE is to include access control policy in the ciphertexts, in which they can only be decrypted if a user possesses attributes that pass through the ciphertext's access structure. In this paper, we prove a secure CP-ABE scheme where the policy can be expressed in non-monotonic access structures. We further compare the performance of our scheme with the existing CP-ABE schemes.

A Study on Anonymous CP-ABE Scheme for Privacy Protection of Data Access Users in Cloud Environments (클라우드 환경에서 데이터 접근 사용자의 프라이버시 보호를 위한 익명 CP-ABE 기법에 관한 연구)

  • Hwang, Yong-Woon;Lee, Im-Yeong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.05a
    • /
    • pp.186-187
    • /
    • 2019
  • 최근 클라우드에서 발생하는 보안위협을 해결하기 위한 다양한 보안 기술 중 속성기반 암호인 CP-ABE 방식의 접근제어 기법을 사용하여 사용자간의 데이터를 안전하게 공유한다. 현재까지 다양한 CP-ABE방식의 접근제어 기법이 연구되었지만, 이 중 보안위협에 취약한 방식들이 존재한다. 특히 제 3자는 암호문에 지정된 접근구조를 통해 데이터에 접근하려는 사용자의 속성을 유추할 수 있고, 이로 인해 사용자의 프라이버시를 침해할 수 있다. 이에 사용자의 프라이버시를 보호할 수 있는 익명 CP-ABE 방식이 연구되고 있다. 하지만 기존에 연구된 익명 CP-ABE 방식 중 제대로 익명화가 적용되지 않은 방식과, 효율성이 부족한 방식들이 존재한다. 이에 복호화하는 사용자의 연산량은 증가된 암호문의 속성의 개수에 비례하기 때문에 비효율적이다. 본 논문에서는 데이터에 접근하는 사용자의 프라이버시를 보호하고, 사용자의 연산량의 효율을 높일 수 있는 익명 CP-ABE 방식을 제안한다.

Fully secure non-monotonic access structure CP-ABE scheme

  • Yang, Dan;Wang, Baocang;Ban, Xuehua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.3
    • /
    • pp.1315-1329
    • /
    • 2018
  • Ciphertext-policy attribute-based encryption (CP-ABE) associates ciphertext with access policies. Only when the user's attributes satisfy the ciphertext's policy, they can be capable to decrypt the ciphertext. Expressivity and security are the two directions for the research of CP-ABE. Most of the existing schemes only consider monotonic access structures are selectively secure, resulting in lower expressivity and lower security. Therefore, fully secure CP-ABE schemes with non-monotonic access structure are desired. In the existing fully secure non-monotonic access structure CP-ABE schemes, the attributes that are set is bounded and a one-use constraint is required by these projects on attributes, and efficiency will be lost. In this paper, to overcome the flaw referred to above, we propose a new fully secure non-monotonic access structure CP-ABE. Our proposition enforces no constraints on the scale of the attributes that are set and permits attributes' unrestricted utilization. Furthermore, the scheme's public parameters are composed of a constant number of group elements. We further compare the performance of our scheme with former non-monotonic access structure ABE schemes. It is shown that our scheme has relatively lower computation cost and stronger security.

Efficient Revocation Scheme for Bethencourt's Ciphertext-Policy Attribute Based Encryption (Bethencourt등의 Ciphertext Policy 속성기반 암호화에서 효율적인 속성값 철회 기법)

  • Jeon, Yun-Koo;Lee, Hoon-Jung;Oh, Hee-Kuk
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.1165-1168
    • /
    • 2010
  • 본 논문에서는 Bethencourt등의 CP-ABE에서 효율적인 속성값 철회 기법에 대해 알아본다. 기존에 제안된 속성값 철회 기법은 대부분 KP-ABE에 대한 것이며, CP-ABE에서 속성값 철회는 철회를 위한 메시지 크기가 철회자에 비례해 커지고 NOT연산을 필요로 한다는 측면에서 효율적이지 못하다. 이에 대해 Bethencourt등의 CP-ABE와 기존의 속성값 철회 기법에 대해 알아본 후 Bethencourt등의 CP-ABE에서 효율적인 속성값 철회 기법에 대해 제시하고자 한다.

CP-ABE Access Control that Block Access of Withdrawn Users in Dynamic Cloud

  • Hwang, Yong-Woon;Lee, Im-Yeong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.10
    • /
    • pp.4136-4156
    • /
    • 2020
  • Recently, data can be safely shared or stored using the infrastructure of cloud computing in various fields. However, issues such as data security and privacy affect cloud environments. Thus, a variety of security technologies are required, one of them is security technology using CP-ABE. Research into the CP-ABE scheme is currently ongoing, but the existing CP-ABE schemes can pose security threats and are inefficient. In terms of security, the CP-ABE approach should be secure against user collusion attacks and masquerade attacks. In addition, in a dynamic cloud environment where users are frequently added or removed, they must eliminate user access when they leave, and so users will not be able to access the cloud after removal. A user who has left should not be able to access the cloud with the existing attributes, secret key that had been granted. In addition, the existing CP-ABE scheme increases the size of the ciphertext according to the number of attributes specified by the data owner. This leads to inefficient use of cloud storage space and increases the amount of operations carried out by the user, which becomes excessive when the number of attributes is large. In this paper, CP-ABE access control is proposed to block access of withdrawn users in dynamic cloud environments. This proposed scheme focuses on the revocation of the attributes of the withdrawn users and the output of a ciphertext of a constant-size, and improves the efficiency of the user decryption operation through outsourcing.

Accountable Attribute-based Encryption with Public Auditing and User Revocation in the Personal Health Record System

  • Zhang, Wei;Wu, Yi;Xiong, Hu;Qin, Zhiguang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.1
    • /
    • pp.302-322
    • /
    • 2021
  • In the system of ciphertext policy attribute-based encryption (CP-ABE), only when the attributes of data user meets the access structure established by the encrypter, the data user can perform decryption operation. So CP-ABE has been widely used in personal health record system (PHR). However, the problem of key abuse consists in the CP-ABE system. The semi-trusted authority or the authorized user to access the system may disclose the key because of personal interests, resulting in illegal users accessing the system. Consequently, aiming at two kinds of existing key abuse problems: (1) semi-trusted authority redistributes keys to unauthorized users, (2) authorized users disclose keys to unauthorized users, we put forward a CP-ABE scheme that has authority accountability, user traceability and supports arbitrary monotonous access structures. Specifically, we employ an auditor to make a fair ruling on the malicious behavior of users. Besides, to solve the problem of user leaving from the system, we use an indirect revocation method based on trust tree to implement user revocation. Compared with other existing schemes, we found that our solution achieved user revocation at an acceptable time cost. In addition, our scheme is proved to be fully secure in the standard model.

Ciphertext policy attribute-based encryption supporting unbounded attribute space from R-LWE

  • Chen, Zehong;Zhang, Peng;Zhang, Fangguo;Huang, Jiwu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.2292-2309
    • /
    • 2017
  • Ciphertext policy attribute-based encryption (CP-ABE) is a useful cryptographic technology for guaranteeing data confidentiality but also fine-grained access control. Typically, CP-ABE can be divided into two classes: small universe with polynomial attribute space and large universe with unbounded attribute space. Since the learning with errors over rings (R-LWE) assumption has characteristics of simple algebraic structure and simple calculations, based on R-LWE, we propose a small universe CP-ABE scheme to improve the efficiency of the scheme proposed by Zhang et al. (AsiaCCS 2012). On this basis, to achieve unbounded attribute space and improve the expression of attribute, we propose a large universe CP-ABE scheme with the help of a full-rank differences function. In this scheme, all polynomials in the R-LWE can be used as values of an attribute, and these values do not need to be enumerated at the setup phase. Different trapdoors are used to generate secret keys in the key generation and the security proof. Both proposed schemes are selectively secure in the standard model under R-LWE. Comparison with other schemes demonstrates that our schemes are simpler and more efficient. R-LWE can obtain greater efficiency, and unbounded attribute space means more flexibility, so our research is suitable in practices.

Traceable Ciphertet-Policy Attribute-Based Encryption with Constant Decryption

  • Wang, Guangbo;Li, Feng;Wang, Pengcheng;Hu, Yixiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.9
    • /
    • pp.3401-3420
    • /
    • 2021
  • We provide a traceable ciphertext-policy attribute based encryption (CP-ABE) construction for monotone access structures (MAS) based on composite order bilinear groups, which is secure adaptively under the standard model. We construct this scheme by making use of an "encoding technique" which represents the MAS by their minimal sets to encrypt the messages. To date, for all traceable CP-ABE schemes, their encryption costs grow linearly with the MAS size, the decryption costs grow linearly with the qualified rows in the span programs. However, in our traceable CP-ABE, the ciphertext is linear with the minimal sets, and decryption needs merely three bilinear pairing computations and two exponent computations, which improves the efficiency extremely and has constant decryption. At last, the detailed security and traceability proof is given.

Improving Security in Ciphertext-Policy Attribute-Based Encryption with Hidden Access Policy and Testing

  • Yin, Hongjian;Zhang, Leyou;Cui, Yilei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2768-2780
    • /
    • 2019
  • Ciphertext-policy attribute-based encryption (CP-ABE) is one of the practical technologies to share data over cloud since it can protect data confidentiality and support fine-grained access control on the encrypted data. However, most of the previous schemes only focus on data confidentiality without considering data receiver privacy preserving. Recently, Li et al.(in TIIS, 10(7), 2016.7) proposed a CP-ABE with hidden access policy and testing, where they declare their scheme achieves privacy preserving for the encryptor and decryptor, and also has high decryption efficiency. Unfortunately, in this paper, we show that their scheme fails to achieve hidden access policy at first. It means that any adversary can obtain access policy information by a simple decisional Diffie-Hellman test (DDH-test) attack. Then we give a method to overcome this shortcoming. Security and performance analyses show that the proposed scheme not only achieves the privacy protection for users, but also has higher efficiency than the original one.

Attribute-Based Data Sharing with Flexible and Direct Revocation in Cloud Computing

  • Zhang, Yinghui;Chen, Xiaofeng;Li, Jin;Li, Hui;Li, Fenghua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.4028-4049
    • /
    • 2014
  • Attribute-based encryption (ABE) is a promising cryptographic primitive for implementing fine-grained data sharing in cloud computing. However, before ABE can be widely deployed in practical cloud storage systems, a challenging issue with regard to attributes and user revocation has to be addressed. To our knowledge, most of the existing ABE schemes fail to support flexible and direct revocation owing to the burdensome update of attribute secret keys and all the ciphertexts. Aiming at tackling the challenge above, we formalize the notion of ciphertext-policy ABE supporting flexible and direct revocation (FDR-CP-ABE), and present a concrete construction. The proposed scheme supports direct attribute and user revocation. To achieve this goal, we introduce an auxiliary function to determine the ciphertexts involved in revocation events, and then only update these involved ciphertexts by adopting the technique of broadcast encryption. Furthermore, our construction is proven secure in the standard model. Theoretical analysis and experimental results indicate that FDR-CP-ABE outperforms the previous revocation-related methods.