• Title/Summary/Keyword: COX-2$TNF-{\alpha}$

Search Result 565, Processing Time 0.04 seconds

A New Neolignan Derivative, Balanophonin Isolated from Firmiana simplex Delays the Progress of Neuronal Cell Death by Inhibiting Microglial Activation

  • Lim, Soo Young;Subedi, Lalita;Shin, Dongyun;Kim, Chung Sub;Lee, Kang Ro;Kim, Sun Yeou
    • Biomolecules & Therapeutics
    • /
    • v.25 no.5
    • /
    • pp.519-527
    • /
    • 2017
  • Excessive activation of microglia causes the continuous production of neurotoxic mediators, which further causes neuron degeneration. Therefore, inhibition of microglial activation is a possible target for the treatment of neurodegenerative disorders. Balanophonin, a natural neolignoid from Firmiana simplex, has been reported to have anti-inflammatory and anti-cancer effects. In this study, we aimed to evaluate the anti-neuroinflammatory effects and mechanism of balanophonin in lipopolysaccharide (LPS)-stimulated BV2 microglia cells. BV2 microglia cells were stimulated with LPS in the presence or absence of balanophonin. The results indicated that balanophonin reduced not only the LPS-mediated TLR4 activation but also the production of inflammatory mediators, such as nitric oxide (NO), prostaglandin E2 (PGE2), $Interleukin-1{\beta}$ ($IL-1{\beta}$), and tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$), in BV2 cells. Balanophonin also inhibited LPS-induced inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX2) protein expression and mitogen activated protein kinases (MAPKs), including extracellular signal-regulated kinase (ERK1/2), c-Jun N-terminal kinase (JNK), and p38 MAPK. Interestingly, it also inhibited neuronal cell death resulting from LPS-activated microglia by regulating cleaved caspase-3 and poly ADP ribose polymerase (PARP) cleavage in N2a cells. In conclusion, our data indicated that balanophonin may delay the progression of neuronal cell death by inhibiting microglial activation.

Anti-neuroinflammatory Effects of Quercetin-3-O-glucuronide Isolated from the Leaf of Vitis labruscana on LPS-induced Neuroinflammation in BV2 Cells (포도잎으로부터 분리된 Quercetin-3-O-glucuronide의 LPS로 유도된 BV2 미세아교세포에서의 항염증 효과)

  • Yoon, Chi-Su;Kim, Dong-Cheol;Ko, Won-Min;Kim, Kyoung-Su;Lee, Dong-Sung;Kim, Dae-Sung;Cho, Hyoung-Kwon;Seo, Jungwon;Kim, Sung Yeon;Oh, Hyuncheol;Kim, Youn-Chul
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.1
    • /
    • pp.17-22
    • /
    • 2014
  • Grapes has long been used for food, and reported as containing polyphenol which has antioxidant and anti-cancer effects. Neuroinflammation is chronic inflammation at the brain, lead to neurodegenerative diseases. In this study, quercetin-3-O-glucuronide (QG) isolated from the leaf of Vitis labruscana has anti-neuroinflammatory effects. QG were investigated using MTT assay, western blot, nitric oxide (NO) assay, prostaglandin $E_2$ ($PGE_2$) assay, cytokine assay in lipopolysaccharide (LPS)-induced inflammation in BV2 cells. QG dose-dependently attenuated the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), accordingly inhibited the production of NO and $PGE_2$. QG decreases the levels of proinflammatory cytokine such as tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interlukin-$1{\beta}$ (IL-$1{\beta}$). Thereby, QG may offer therapeutic potential for treatment of neurodegenerative disease related to neuroinflammation.

Effects of remifentanil preconditioning on factors related to uterine contraction in WISH cells

  • Kim, Cheul-Hong;Lee, Sang-Hoon;Kim, Eun-Jung;Ahn, Ji-Hye;Choi, Eun-Ji;Yoon, Ji-Uk;Choi, In-Seok
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.19 no.6
    • /
    • pp.343-351
    • /
    • 2019
  • Background: Preterm labor and miscarriage may occur in stressful situations, such as a surgical operation or infection during pregnancy. Pharyngeal and buccal abscess and facial bone fractures are inevitable dental surgeries in pregnant patients. Remifentanil is an opioid analgesic that is commonly used for general anesthesia and sedation. Nonetheless, no study has investigated the effects of remifentanil on amniotic epithelial cells. This study evaluated the effects of remifentanil on the factors related to uterine contraction and its mechanism of action on amniotic epithelial cells. Methods: Amniotic epithelial cells were preconditioned at various concentrations of remifentanil for 1 h, followed by 24-h lipopolysaccharide (LPS) exposure. MTT assays were performed to assess the cell viability in each group. The effects of remifentanil on factors related to uterine contractions in amniotic epithelial cells were assessed using a nitric oxide (NO) assay, western blot examinations of the expression of nuclear factor-kappa B (NF-κB), cyclooxygenase 2 (COX2), and prostaglandin E2 (PGE2), and RT-PCR examinations of the expression of the proinflammatory cytokines interleukin (IL)-1β and tumor necrosis factor-alpha (TNF-α). Results: Remifentanil did not affect viability and nitric oxide production of amniotic epithelial cells. Western blot analysis revealed that remifentanil preconditioning resulted in decreased expressions of NF-κB and PGE2 in the cells in LPS-induced inflammation, and a tendency of decreased COX2 expression. The results were statistically significant only at high concentration. RT-PCR revealed reduced expressions of IL-1β and TNF-α. Conclusions: Preconditioning with remifentanil does not affect the viability of amniotic epithelial cells but reduces the expression of factors related to uterine contractions in situations where cell inflammation is induced by LPS, which is an important inducer of preterm labor. These findings provide evidence that remifentanil may inhibit preterm labor in clinical settings.

Anti-inflammatory and PPAR Subtypes Transactivational Activities of Phenolics and Lignans from the Stem Bark of Kalopanax pictus

  • Quang, Tran Hong;Ngan, Nguyen Thi Thanh;Minh, Chau Van;Kiem, Phan Van;Nhiem, Nguyen Xuan;Tai, Bui Huu;Thao, Nguyen Phuong;Luyen, Bui Thi Thuy;Song, Seok-Bean;Kim, Young-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.11
    • /
    • pp.4049-4054
    • /
    • 2011
  • A new compound, kalopanaxin F (3), and 11 known compounds (1, 2, 4-12), were isolated from the stem bark of Kalopanax pictus. Their structures were elucidated on the basis of chemical and spectroscopic methods. Five of the compounds (2, 3, 5, 6, and 12) significantly inhibited $TNF{\alpha}$-induced NF-${\kappa}B$ transcriptional activity in HepG2 cells in a dose-dependent manner, with $IC_{50}$ values ranging from 6.2 to 9.1 ${\mu}M$. Furthermore, the transcriptional inhibitory function of these compounds was confirmed based on decreases in COX-2 and iNOS gene expression in HepG2 cells. Compounds 3-7, 9, and 12 significantly activated the transcriptional activity of PPARs dose-dependently, with $EC_{50}$ values ranging from 4.1-$12.7{\mu}M$. Compounds 4 and 5 exhibited $PPAR{\alpha}$, $PPAR{\gamma}$, and $PPAR{\beta}({\delta})$ transactivational activities in a dose-dependent manner, with $EC_{50}$ values of 16.0 and 17.0, 8.7 and 16.5, 26.2 and 26.3 ${\mu}M$, respectively.

The Effect of Saccharin on the Gene Expression of NF-κB and Inflammatory Cytokines in LPS-Stimulated SW480 Colon Cancer Cells (옥수수수염 추출물이 SW480 Colon Cancer Cell에서 NF-κB와 염증성 사이토카인 발현에 미치는 영향)

  • Choi, Hyunji;Kim, Sunlim;Kang, Hyeonjung;Kim, Myunghwan;Kim, Wookyoung
    • Journal of the Korean Dietetic Association
    • /
    • v.25 no.3
    • /
    • pp.217-228
    • /
    • 2019
  • There have been no published studies concerning the anti-inflammatory effects of corn silk on colon cancer cells. Thus, this study was conducted to investigate the effect of corn silk extract containing high levels of maysin on inflammation and its mechanism of action in colon cancer cells. SW 480 human colon cancer cells were treated with $1{\mu}g/mL$ of lipopolysaccharide (LPS) to induce inflammation, and next they were treated with different concentrations of corn silk extract (0, 5, 10 and $15{\mu}g/mL$). The concentrations of nitric oxide (NO) were determined. The mRNA expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor ${\alpha}$ ($TNF-{\alpha}$), interleukin-1beta ($IL-1{\beta}$) and interleukin-6 (IL-6), were determined. Western blot analysis was performed to determine the protein expressions of nuclear factor-kappa B ($NF-{\kappa}B$) and mitogen-activated protein kinases, and the latter consists of extracellular signal-related kinase (ERK), c-jun NH2-terminal kinase (JNK) and p38 MAP kinase (p38). The concentration of NO and the mRNA expression of iNOS were significantly and dose-dependently decreased in the corn silk-treated groups (P<0.05). The mRNA expression of $TNF-{\alpha}$, $IL-1{\beta}$ and IL-6 were significantly increased in the LPS-treated group (P<0.05), but these expressions were significantly and dose-dependently decreased in the corn silk treated groups (P<0.05). The protein expressions of $NF-{\kappa}B$ (in a dose-dependent fashion), ERK (at 10 and $15{\mu}g/mL$), JNK (at $15{\mu}g/mL$) and p38 (at 10 and $15{\mu}g/mL$) were significantly decreased with corn silk treatments (P<0.05). In conclusion, corn silk extract containing high levels of maysin seems to inhibit the LPS-induced inflammatory responses in SW480 colon cancer cells via the $NF-{\kappa}B$ pathway.

The Effect of Polyphenols Isolated from Cynanchi wilfordii Radix with Anti-inflammatory, Antioxidant, and Anti-bacterial Activity

  • Jeong, Sunyoung;Lee, Sunwoo;Choi, Woo Jin;Sohn, Uy Dong;Kim, Wonyong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.2
    • /
    • pp.151-158
    • /
    • 2015
  • Recently, Cynanchi wilfordii Radix has gained wide use in Asian countries as a functional food effective for relieving fatigue, osteoporosis, and constipation, particularly in menopausal disorders. However, its anti-inflammatory and anti-microbial activities have not been explored in detail to date. The anti-inflammatory, antioxidant, and anti-bacterial properties of the Cynanchi wilfordii Radix extracts obtained with water, methanol, ethanol, and acetone were compared. All 4 polyphenol-containing extracts exhibited anti-inflammatory and antioxidant effects. The ethanol extract was found to elicit the most potent reduction of nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$), and cytokine (IL-$1{\beta}$, IL-6, IL-10, and TNF-${\alpha}$) levels, as well as inhibit the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in a concentration-dependent manner. The evaluation of antioxidant activity also revealed the ethanol extract to have the highest free radical scavenging activity, measured as $85.3{\pm}0.4%$, which is equivalent to 99.9% of the activity of ${\alpha}$ -tocopherol. In the assessment of anti-bacterial activity, only ethanol extract was found to inhibit the growth of the Bacillus species Bacillus cereus and Bacillus anthracis. These results show that polyphenols of Cynanchi wilfordii Radix have anti-inflammatory, antioxidant, and anti-bacterial properties that can be exploited and further improved for use as a supplementary functional food, in cosmetics, and for pharmaceutical purposes.

TI-I-174, a Synthetic Chalcone Derivative, Suppresses Nitric Oxide Production in Murine Macrophages via Heme Oxygenase-1 Induction and Inhibition of AP-1

  • Kim, Mi Jin;Kadayat, Taraman;Kim, Da Eun;Lee, Eung-Seok;Park, Pil-Hoon
    • Biomolecules & Therapeutics
    • /
    • v.22 no.5
    • /
    • pp.390-399
    • /
    • 2014
  • Chalcones (1,3-diaryl-2-propen-1-ones), a flavonoid subfamily, are widely known for their anti-inflammatory properties. Propenone moiety in chalcones is known to play an important role in generating biological responses by chalcones. In the present study, we synthesized chalcone derivatives structurally modified in propenone moiety and examined inhibitory effect on nitric oxide (NO) production and its potential mechanisms. Among the chalcone derivatives used for this study, TI-I-174 (3-(2-Hydroxyphenyl)-1-(thiophen-3-yl)prop-2-en-1-one) most potently inhibited lipopolysaccharide (LPS)-stimulated nitrite production in RAW 264.7 macrophages. TI-I-174 treatment also markedly inhibited inducible nitric oxide synthase (iNOS) expression. However, TI-I-174 did not significantly affect production of IL-6, cyclooxygenase-2 (COX-2) and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), implying that TI-I-174 inhibits production of inflammatory mediators in a selective manner. Treatment of macrophages with TI-I-174 significantly inhibited transcriptional activity of activator protein-1 (AP-1) as determined by luciferase reporter gene assay, whereas nuclear factor-${\kappa}B$ (NF-${\kappa}B$) activity was not affected by TI-I-1744. In addition, TI-I-174 significantly inhibited activation of c-Jun-N-Terminal kinase (JNK) without affecting ERK1/2 and p38MAPK, indicating that down-regulation of iNOS gene expression by TI-I-174 is mainly attributed by blockade of JNK/AP-1 activation. We also demonstrated that TI-I-174 treatment led to an increase in heme oxygenase-1 (HO-1) expression both at mRNA and protein level. Transfection of siRNA targeting HO-1 reversed TI-I-174-mediated inhibition of nitrite production. Taken together, these results indicate that TI-I-174 suppresses NO production in LPS-stimulated RAW 264.7 macrophages via induction of HO-1 and blockade of AP-1 activation.

Immunomodulatory effect of the water extract of Aster tataricus through mitogen-activated protein kinase signaling pathway (Aster tataricus 물 추출물의 mitogen-activated protein kinase 신호 전달 경로를 통한 면역 조절 효과)

  • Lee, Chea Yeon;Park, Hyo Sung;Kong, Deok-Hoon;Kim, Young Kwan;Cho, Whajung
    • Journal of Nutrition and Health
    • /
    • v.53 no.5
    • /
    • pp.452-463
    • /
    • 2020
  • Purpose: Aster tataricus (AT) is one of the Asteraceae perennial herbs used in traditional Chinese medicine. The herb contains various bioactive substances, such as flavonoids, isoflavonoids, and phenolic compounds in the roots, and exhibits a range of effects including anti-bacterial, anti-oxidant, and anti-inflammatory activities. This study compared the immunomodulatory effects of ethanol and water extracts of whole AT, except the roots, and analyzed the molecular mechanisms for the regulatory effects on cytokine secretion from THP-1 cells. Methods: The effects of AT extract on the cell viability and proliferation of THP-1 cells were analyzed using the Cell Counting Kit-8 method. The concentrations of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in the cell culture supernatant of the AT-treated THP-1 cells were measured using an enzyme-linked immunosorbent assay. The protein levels of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), inhibitor of nuclear factor kappa B (IκBα), and mitogen-activated protein kinase (MAPK) phosphorylation in the cell lysates were determined by western blotting. Results: The water extract and the ethanol extract of AT did not affect the cell viability, and increased the proliferation of THP-1 cells significantly compared to the vehicle. The water extract increased the secretion of IL-1β from THP-1 cells in a dose-dependent manner, but the ethanol extract had no effect. The expression of COX-2 and iNOS protein and the phosphorylation of MAPK and Akt were induced in AT-treated cells. In addition, IκBα was degraded by AT in a concentration-dependent manner. IL-1β secretion by AT was reduced by extracellular-signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) inhibitors, while TNF-α secretion was decreased by inhibitors of ERK, p38 MAPK, and JNK. Interestingly, the p38 MAPK inhibitor increased the production of IL-1β by AT further. Conclusion: The water extract of the above-ground parts of AT contains immunomodulatory bioactive substances that stimulate immune cells through the MAPK signaling pathway.

Anti-Inflammatory Effect of Ethanol Extract from Grateloupia crispata on Lipopolysaccharide-Induced Inflammatory Responses in RAW 264.7 Cells and Mice Ears (LPS로 유도된 RAW 264.7 세포와 마우스 귀 조직에 대한 주름까막살 에탄올 추출물의 항염증 효과)

  • Bae, Nan-Young;Kim, Min-Ji;Kim, Koth-Bong Woo-Ri;Park, Sun-Hee;Jang, Mi-Ran;Ahn, Dong-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.8
    • /
    • pp.1090-1098
    • /
    • 2016
  • The anti-inflammatory effects of ethanol extract from Grateloupia crispata (GCEE) were investigated in lipopolysaccharide (LPS)-stimulated murine macrophages. Anti-inflammatory effects were detected by enzyme-linked immunosorbent assay, Western blotting, and immunohistochemistry. There was no cytotoxic effect on proliferation of macrophages treated with GCEE compared to the control. GCEE significantly inhibited production of pro-inflammatory cytokines [interleukin (IL)-6, tumor necrosis $factor-{\alpha}$, and $IL-1{\beta}$] as well as nitric oxide in LPS-stimulated RAW 264.7 cells. In addition, GCEE suppressed expression of inducible nitric oxide synthase, cyclooxygenase-2, and nuclear $factor-{\kappa}B$ in a dose-dependent manner. GCEE significantly reduced activation of mitogen-activated protein kinases. In the in vivo test, evaluation of anti-inflammatory activity of GCEE was performed using croton oil-induced ear edema in ICR mice. Oral administration of 10 mg/kg to 250 mg/kg of GCEE significantly reduced ear edema in a dose-dependent manner compared to croton oil-induced mice. Moreover, GCEE reduced ear thickness and the number of mast cells compared to croton oil-induced mice in the histological analysis. These data suggest that GCEE could be used as a potential source for anti-inflammatory agents.

Intestinal anti-inflammatory activity of Sasa quelpaertensis leaf extract by suppressing lipopolysaccharide-stimulated inflammatory mediators in intestinal epithelial Caco-2 cells co-cultured with RAW 264.7 macrophage cells

  • Kim, Kyung-Mi;Kim, Yoo-Sun;Lim, Ji Ye;Min, Soo Jin;Ko, Hee-Chul;Kim, Se-Jae;Kim, Yuri
    • Nutrition Research and Practice
    • /
    • v.9 no.1
    • /
    • pp.3-10
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, involves chronic inflammation of the gastrointestinal tract. Previously, Sasa quelpaertensis leaves have been shown to mediate anti-inflammation and anti-cancer effects, although it remains unclear whether Sasa leaves are able to attenuate inflammation-related intestinal diseases. Therefore, the aim of this study was to investigate the anti-inflammatory effects of Sasa quelpaertensis leaf extract (SQE) using an in vitro co-culture model of the intestinal epithelial environment. MATERIALS/METHODS: An in vitro co-culture system was established that consisted of intestinal epithelial Caco-2 cells and RAW 264.7 macrophages. Treatment with lipopolysaccharide (LPS) was used to induce inflammation. RESULTS: Treatment with SQE significantly suppressed the secretion of LPS-induced nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$), IL-6, and IL-$1{\beta}$ in co-cultured RAW 264.7 macrophages. In addition, expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, and tumor necrosis factor (TNF)-${\alpha}$ were down-regulated in response to inhibition of $I{\kappa}B{\alpha}$ phosphorylation by SQE. Compared with two bioactive compounds that have previously been identified in SQE, tricin and P-coumaric acid, SQE exhibited the most effective anti-inflammatory properties. CONCLUSIONS: SQE exhibited intestinal anti-inflammatory activity by inhibiting various inflammatory mediators mediated through nuclear transcription factor kappa-B (NF-kB) activation. Thus, SQE has the potential to ameliorate inflammation-related diseases, including IBD, by limiting excessive production of pro-inflammatory mediators.