• 제목/요약/키워드: COX-2$NF{-\kappa}B$

검색결과 445건 처리시간 0.027초

Lipopolysaccharide로 처리 된 RAW264.7 세포에서 고마리 추출물의 항염증 효과 (The Anti-Inflammatory Effects of Persicaria thunbergii Extracts on Lipopolysaccharide-Stimulated RAW264.7 Cells)

  • 김상보;성영애;장희재;김군도
    • 생명과학회지
    • /
    • 제21권12호
    • /
    • pp.1689-1697
    • /
    • 2011
  • 본 연구는 고마리 추출물이 가지는 항염증 활성을 알아보기 위하여 쥐의 대식세포(RAW264.7 cell)에 Lipopolysaccharide (LPS)를 처리하여 염증반응을 유도하고 이때 발생되는 Nitric oxide (NO)의 생성 억제를 확인하였다. 또한 염증에서 중요하게 알려져 있는 Inducible nitric oxide synthase (iNOS), Cyclooxygenase-2 (COX-2), Nuclear factor-kappa B (NF-${\kappa}B$) 단백질들의 발현을 비교하였고, 추가적으로 NF-${\kappa}B$ 단백질의 핵 내부로의 이전 및 활성을 확인하였다. 메탄올 추출물은 NO 생성 및 iNOS, COX-2, NF-${\kappa}B$ 단백질의 발현을 억제하고, 세포를 보호하는 효과를 가지는 Heme oxygenase-1 (HO-1) 단백질의 발현을 증가시켰다. 위 결과를 바탕으로 하여 n-butanol, hexane, ethyl acetate 용매를 이용한 추가적인 분획을 실시하였다. 이들 분획 중 고마리의 ethyl acetate 추출물은 Prostaglandin $E_2$ ($PGE_2$), NO 생성을 억제 하였으며, iNOS, COX-2 단백질들의 발현을 감소, NF-${\kappa}B$의 핵 내부로의 이동을 억제하는 효과가 높다는 것을 확인하였다. 이러한 연구결과는 고마리 식물이 좋은 항염증 활성을 가지고 있음을 나타내며, 지속적인 분획으로 고마리 식물이 가지는 항염증 활성 물질을 선별하여 그 작용기작을 규명하는 연구가 필요하다.

Salicylate Regulates Cyclooxygenase-2 Expression through ERK and Subsequent $NF-_kB$ Activation in Osteoblasts

  • Chae, Han-Jung;Lee, Jun-Ki;Byun, Joung-Ouk;Chae, Soo-Wan;Kim, Hyung-Ryong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제7권4호
    • /
    • pp.239-246
    • /
    • 2003
  • The expression of cyclooxygenase-2 (COX-2) is a characteristic response to inflammation and can be inhibited with sodium salicylate. $TNF-{\alpha}$ plus $IFN-{\gamma}$ can induce extracellular signal-regulated kinase (ERK), IKK, $I{\kappa}B$ degradation and NF-${\kappa}B$ activation. The inhibition of the ERK pathway with selective inhibitor, PD098059, blocked cytokine-induced COX-2 expression and $PGE_2$ release. Salicylate treatment inhibited COX-2 expression induced by $TNF-{\alpha}$/$IFN-{\gamma}$ and regulated the activation of ERK, IKK and $I{\kappa}B$ degradation and subsequent NF-${\kappa}B$ activation in MC3T3E1 osteoblasts. Furthermore, antioxidants such as catalase, N-acetyl-cysteine or reduced glutathione attenuated COX-2 expression in combined cytokines-treated cells, and also inhibited the activation of ERK, IKK and NF-${\kappa}B$ in MC3T3E1 osteoblasts. In addition, $TNF-{\alpha}$/$IFN-{\gamma}$ stimulated ROS release in the osteoblasts. However, salicylate had no obvious effect on ROS release in DCFDA assay. The results showed that salicylate inhibited the activation of ERK and IKK, $I{\kappa}B$ degradation and NF-${\kappa}B$ activation independent of ROS release and suggested that salicylate exerts its anti-inflammatory action in part through inhibition of ERK, IKK, $I{\kappa}B$, $NF-{\kappa}B$ and resultant COX-2 expression pathway.

Sodium Salicylate Inhibits Expression of COX-2 Through Suppression of ERK and Subsequent $NF-{\kappa}B$ Activation in Rat Ventricular Cardiomyocytes

  • Kwon, Keun-Sang;Chae, Han-Jung
    • Archives of Pharmacal Research
    • /
    • 제26권7호
    • /
    • pp.545-553
    • /
    • 2003
  • The expression of cyclooxygenase-2 (COX-2) is a characteristic response to inflammation, which can be inhibited with sodium salicylate. IL-1$\beta$ and TNF-$\alpha$ can induce extracellular signal-regulated kinase (ERK), IKK, IkB degradation and NF-$\kappa$B activation. Salicylate inhibited the IL-1$\beta$ and TNF-$\alpha$-induced COX-2 expressions, regulated the activation of ERK, IKK and IkB degradation, and the subsequent activation of NF-$\kappa$B, in neonatal rat ventricular cardiomyocytes. The inhibition of the ERK pathway, with a selective inhibitor, PD098059, blocked the expressions of IL-1$\beta$ and TNF-$\alpha$-induced COX-2 and $PGE_2$ release. The antioxidant, N-acetyl-cysteine, also reduced the glutathione or catalase- attenuated COX-2 expressions in IL-1$\beta$ and TNF-$\alpha$-treated cells. This antioxidant also inhibited the activation of ERK and NF-$\kappa$B in neonatal rat cardiomyocytes. In addition, IL-1$\beta$ and TNF-$\alpha$-stimulated the release of reactive oxygen species (ROS) in the cardiomyocytes. However, salicylate had no inhibitory effect on the release of ROS in the DCFDA assay. The results showed that salicylate inhibited the activation of ERK and IKK, I$\kappa$B degradation and NF-$\kappa$B activation, independently of the release of ROS, which suggested that salicylate exerts its anti-inflammatory action through the inhibition of ERK, IKK, IkB and NF-$\kappa$B, and the resultant COX-2 expression pathway in neonatal rat ventricular cardiomyocytes.

봉약침액(蜂藥鍼液)과 Melittin 약침액(藥鍼液)이 RAW 264.7 세포의 PGE2, COX-2 및 NF-kB에 미치는 영향(影響) (The Effects of Bee Venom and Melittin Solution on PGE2, COX-2, and NF-kB Dependent Luciferase Activity in RAW 264.7 Cells)

  • 정일국;송호섭
    • Journal of Acupuncture Research
    • /
    • 제21권6호
    • /
    • pp.19-36
    • /
    • 2004
  • Objective : The purpose of this study was to investigate the effect of Bee Venom and Melittin Solution on the lipopolysaccharide(LPS) and sodium nitroprusside(SNP)-induced expression of prostaglandin $E_2(PGE_2)$, cyclooxygenase-2(COX-2), nuclear factor kappa B($NF-{\kappa}B$) and nuclear factor kappa B($NF-{\kappa}B$) dependent luciferase activity in RAW 264.7 cells, a murine macrophage cell line. Methods : The expression of PGE2 was determined by determination of $PEG_2$, COX-2 was by western blotting with corresponding antibodies, $NF-{\kappa}B$ was by gel mobility shift assay method and $NF-{\kappa}B$ dependent luciferase activity was investigated by luciferase assay in RAW 264.7 cells. Results : 1. LPS and SNP-induced expression of $PEG_2$ was significant after 24hour. 2. The 0.5, 1 and $5{\mu}g/mL$ of bee venom and the 5 and $10{\mu}g/mL$ of melittin solution inhibited significantly LPS-induced expression of $PEG_2$ and, the $5{\mu}g/mL$ of bee venom and the 5 and $10{\mu}g/mL$ of melittin solution inhibited significantly SNP-induced expression of $PEG_2$ compared with control, respectively. The 0.5 and $1{\mu}g/mL$ of bee venom could not significantly inhibit SNP-induced expression of $PEG_2$ compared with control. 3. The $5{\mu}g/mL$ of bee venom and the 5 and $10{\mu}g/mL$ of melittin solution inhibited significantly LPS and SNP-induced expression of COX-2 compared with control, respectively. The 0.5 and $1{\mu}g/mL$ of bee venom inclined to decrease LPS and SNP-induced expression of COX-2 compared with control. 4. The 0.5, 1 and $5{\mu}g/mL$ of bee venom and the 5 and $10{\mu}g/mL$ of melittin solution inhibited significantly LPS and SNP-induced expression of $NF-{\kappa}B$ compared with control, respectively. 5. The 0.5, 1 and $5{\mu}g/mL$ of bee venom and the 5 and $10{\mu}g/mL$ of melittin solution inhibited significantly LPS-induced expression of $NF-{\kappa}B$ dependent luciferase activity and the 1 and $5{\mu}g/mL$ of bee venom and the 5 and $10{\mu}g/mL$ of melittin solution inhibited significantly SNP-induced expression of $NF-{\kappa}B$ dependent luciferase activity compared with control, respectively. The $NF-{\kappa}B$ inhibitor also inhibited significantly LPS and SNP-induced expression of $NF-{\kappa}B$ dependent luciferase activity compared with control. 6. The 0.5, 1 and $5{\mu}g/mL$ of bee venom and the 5 and $10{\mu}g/mL$ of melittin solution inhibited significantly LPS + IFN-${\gamma}$, TNF-${\alpha}$ and LPS + TNF-${\alpha}$-induced expression of $NF-{\kappa}B$ dependent luciferase activity compared with control, respectively. The $NF-{\kappa}B$ inhibitor also inhibited significantly LPS and SNP-induced expression of $NF-{\kappa}B$ dependent luciferase activity compared with control. Conclusions : These results suggest the inhibitory action of bee venom and melittin solution on the inflammatory mediators such as $PEG_2$, COX-2 and $NF-{\kappa}B$.

  • PDF

Guggulsterone Suppresses the Activation of NF-${\kappa}B$ and Expression of COX-2 Induced by Toll-like Receptor 2, 3, and 4 Agonists

  • Ahn, Sang-Il;Youn, Hyung-Sun
    • Food Science and Biotechnology
    • /
    • 제17권6호
    • /
    • pp.1294-1298
    • /
    • 2008
  • Toll-like receptors (TLRs) induce innate immune responses recognizing conserved microbial structural molecules. All TLR signaling pathways culminate in the activation of nuclear factor-${\kappa}B$ (NF-${\kappa}B$). The activation of NF-${\kappa}B$ leads to the induction of inflammatory gene products such as cyclooxygenase-2 (COX-2). Guggul has been used for centuries to treat a variety of diseases. Guggulstreone, one of the active ingredients in guggul, has been used to treat many chronic diseases. However, the mechanism as to how guggulsterone mediate the health effects is largely unknown. Here, we report biochemical evidence that guggulsterone inhibits the NF-${\kappa}B$ activation and COX-2 expression induced by TLR2, TLR3, and TLR4 agonists. Guggulsterone also inhibits the NF-${\kappa}B$ activation induced by downstream signaling components of TLRs, myeloid differential factor 88 (MyD88), $I{\kappa}B$ kinase ${\beta}$ ($IKK{\beta}$), and p65. These results imply that guggulsterone can modulate the immune responses regulated by TLR signaling pathways.

6-Shogaol의 Toll-like receptor 2, 3, 4 agonists에 의해서 유도된 cyclooxygenase-2 발현 억제 (Suppression of the Expression of Cyclooxygenase-2 Induced by Toll-like Receptor 2, 3, and 4 Agonists by 6-Shogaol)

  • 김점지;안상일;이전수;윤새미;이미영;윤형선
    • 한국식품과학회지
    • /
    • 제40권3호
    • /
    • pp.332-336
    • /
    • 2008
  • 선천성 면역은 병원성균의 침입에 대항하기 위한 숙주의 최초 방어체계라 할 수 있다. 이러한 선천성 면역반응은 병원균들이 가지고 있는 독특한 구조를 인식하는 TLRs에 의해서 조절되어 진다고 알려져 있다. 숙주에 침입한 여러 병원성균들이 TLRs를 자극하며 이렇게 자극된 신호들은 아래로 전달되어 전사요소 $NF-{\kappa}B$의 활성화를 유도하고 결국 COX-2와 같은 염증 유발인자를 유도하여 암이나 질병을 유발하게 된다. 우리는 이번 연구를 통하여 생강 추출물중의 하나인 6-shogaol이 어떻게 $NF-{\kappa}B$ 활성화나 COX-2 발현을 조절하여 항염증 효과를 가지고 있는지를 알아보았다. 6-shogaol은 TLR2, TLR3, TLR4 agonists에 의해서 유도된 $NF-{\kappa}B$ 활성화와 COX-2 발현을 억제하였다. 이러한 결과는6-shogaol이 여러 병원균들로부터 유도되는 염증반응이나 만성적인 질병들을 조절할 수 있다는 중요한 결과를 보여주는 것이라 할 수 있다.

지골피(地骨皮)가 $H_{2}O_{2}$에 의한 $LLC-PK_1$ 세포의 Redox Status 및 $NF-{\kappa}B$ Signaling에 미치는 영향 (The Effects of Lycium Chinense Milie on the $H_{2}O_{2}$-treated $LLC-PK_1$ Cell's Redox Status and $NF-{\kappa}B$Signaling)

  • 최규호;신현철
    • 대한한방내과학회지
    • /
    • 제30권1호
    • /
    • pp.36-50
    • /
    • 2009
  • Objectives : This study was aimed to verify the cytoprotective function, antioxidative effect and inflammation genes inhibitory effects of Lycium chinense Milie. Therefore the generation of superoxide anion radical ( $O_2\;^-$), peroxynitrite ($ONOO^-$), nitric oxide (NO) and prostaglandin $E_2$ $(PGE_2)$ was investigated in the renal epithelial cells of mouse. Effects of Lycium chinense Milie on the expression of inflammation-related proteins, $IKK-{\alpha}$. $p-IKK-\alpha\beta$, $p-I{\kappa}B-\alpha$, $NF-{\kappa}B$ (p50, p65), COX-2 and iNOS, were examined by western blotting. Methods : For this study, the fluorescent probes were used, namely dihydrorhodamine 123 (DHR 123), 4.5-diaminofluorescein (DAF-2) and 2',7'-dichlorodihydrofluorescein diacetate (DCFDA). Western blotting was performed using anti-$IKK-\alpha$, anti-phospho $IKK-\alpha\beta$, anti-phospho $I{\kappa}B-\alpha$, anti-$NF-{\kappa}B$ (p50, p65), anti-COX-2 and anti-iNOS, respectively. Results : Lyciutn chinense Milie reduced $H_{2}O_{2}$-induced cell death dose-dependently. It inhibited the generation of $O_2\;^-$, $ONOO^-$, NO and $PGE_2$ in the $H_{2}O_{2}$-treated renal epithelial cells of mouse in vitro. Lycium chinense Milie inhibited the expression of $IKK-\alpha$, $p-IKK-\alpha\beta,\;p-I{\kappa}B-\alpha$, COX-2 and iNOS genes by means of decreasing activation of $NF-{\kappa}B$. Conclusions : According to above results. Lycium chinense Milie recommended to be applied in treatment for the inflammatory process and inflammation-related diseases.

  • PDF

PMA에 의한 cyclooxygenase-2 발현 및 prostaglandin E2의 생성 증가에 미치는 톳 추출물의 영향 (Hizikia fusiforme Inhibits Cyclooxygenase-2 Expression and Prostaglandin E2 Production by PMA through Inactivation of NF-κB)

  • 박철;최영현
    • 생명과학회지
    • /
    • 제19권10호
    • /
    • pp.1396-1402
    • /
    • 2009
  • 본 연구에서는 갈조류의 일종인 톳(H. fusiforme)의 항염증 효과에 관한 생화학적 기전 해석을 위하여 U937 단핵구 세포를 이용하였으며, PMA에 의하여 인위적으로 유발된 COX-2의 발현 및 $PGE_2$의 생성 증가에 미치는 몇 가지 톳 추출물의 영향을 조사하였다. PMA는 U937 세포에서 처리 농도 의존적으로 COX-2의 전사 및 번역수준의 발현을 증가시켰으나, COX-1의 발현에는 큰 변화가 없었다. PAM에 의한 COX-2의 발현 증가는 $PGE_2$ 생성 증가와 연관성이 있었고, 톳의 열수 추출물에 비하여 에탄올 및 메탄올 추출물은 COX-2의 발현 증가는 $PGE_2$ 생성 증가를 매우 억제시켰으나, COX-1의 발현에는 영향을 주지 않았다. 아울러 PMA에 의한 NF-$\kappa$B의 핵내 이동 및 I$\kappa$B의 분해를 톳의 에탄올 및 메탄올 추출물이 완벽하게 차단시켰다. 본 연구의 결과는 톳의 에탄올 및 메탄올 추출물이 NF-$\kappa$B의 활성을 차단함으로서 COX-2의 발현 및 $PGE_2$ 생성을 저해하였음을 의미하며, 이는 톳이 강력한 항염증 효능을 가지고 있음을 뒷받침하여 주는 것이다.

이정환의 $NF-{\kappa}B$ 활성화 기전을 통한 COX-2 저해 기전 (Inhibition of COX-2 gene expression via $NF-{\kappa}B$ pathway by Ichungwhan)

  • 손명용;정지천
    • 대한한의학회지
    • /
    • 제25권3호
    • /
    • pp.90-98
    • /
    • 2004
  • Objectives : The present study was undertaken to investigate the molecular mechanisms of Ichungwhan for inhibition of cyclooxygenase-2 (COX-2) gene expression via suppression of NF-κB (nuclear factor κB) using aged rats. NF-κB is the most important modulator of inflammation and NF-κB regulates the gene expression of several pro-inflammatory cytokines, such as COX-2. Methods : In the experiment, we investigated the scavenging property of Ichungwhan on reactive species (RS) including nitrogen-derived species (RNS), measured by DCF-DA (2,7-dichlorodihydrofluorexcein diacetate) / DHR 123 (dihydrorhodamine 123) assay. Protein expression levels of COX-2, NF-κB, p-ERK and p-p38 were assayed by western blot. Results : We showed that Ichungwhan inhibits RS including RNS and inhibits NF-κB activation by blocking the dissociation of inhibitory IκB-β via suppression of IKK pathway. Also, Ichungwhan inhibits COX-2 gene expression. Conclusions : These findings suggest that Ichungwhan modulates COX-2 gene expression via suppression of the NF-κB pathway.

  • PDF

Cadmium but not Mercury Suppresses NF-$\kappa$B Activation and COX-2 Expression Induced by Toll-like Receptor 2 and 4 Agonists

  • Ahn, Sang-Il;Park, Seul-Ki;Lee, Mi-Young;Youn, Hyung-Sun
    • Molecular & Cellular Toxicology
    • /
    • 제5권2호
    • /
    • pp.141-146
    • /
    • 2009
  • Toll-like receptors (TLRs) induce innate immune responses by recognizing conserved microbial structural molecules. All TLR signaling pathways culminate in the activation of nuclear factor kappa-B (NF-$\kappa$B) leading to the induction of inflammatory gene products such as cyclooxygenase-2 (COX-2). Deregulated activation of TLRs can lead to the development of severe systemic inflammation. Divalent heavy metals, cadmium and mercury, have been used for thousands of years. While cadmium and mercury are clearly toxic to most mammalian organ systems, especially the immune system, their underlying toxic mechanism(s) remain unclear. Here, we report biochemical evidence that cadmium, but not mercury, inhibits NF-$\kappa$B activation and COX-2 expression induced by TLR2 or TLR4 agonists, while cadmium does not inhibit NF-$\kappa$B activation induced by the downstream signaling component of TLRs, MyD88. Thus, the target of cadmium to inhibit NF-$\kappa$B activation may be upstream of MyD88 including TLRs themselves, or events leading to TLR activation by agonists.