• Title/Summary/Keyword: COX-2$NF{\gamma}B$

Search Result 19, Processing Time 0.024 seconds

Salicylate Regulates Cyclooxygenase-2 Expression through ERK and Subsequent $NF-_kB$ Activation in Osteoblasts

  • Chae, Han-Jung;Lee, Jun-Ki;Byun, Joung-Ouk;Chae, Soo-Wan;Kim, Hyung-Ryong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.4
    • /
    • pp.239-246
    • /
    • 2003
  • The expression of cyclooxygenase-2 (COX-2) is a characteristic response to inflammation and can be inhibited with sodium salicylate. $TNF-{\alpha}$ plus $IFN-{\gamma}$ can induce extracellular signal-regulated kinase (ERK), IKK, $I{\kappa}B$ degradation and NF-${\kappa}B$ activation. The inhibition of the ERK pathway with selective inhibitor, PD098059, blocked cytokine-induced COX-2 expression and $PGE_2$ release. Salicylate treatment inhibited COX-2 expression induced by $TNF-{\alpha}$/$IFN-{\gamma}$ and regulated the activation of ERK, IKK and $I{\kappa}B$ degradation and subsequent NF-${\kappa}B$ activation in MC3T3E1 osteoblasts. Furthermore, antioxidants such as catalase, N-acetyl-cysteine or reduced glutathione attenuated COX-2 expression in combined cytokines-treated cells, and also inhibited the activation of ERK, IKK and NF-${\kappa}B$ in MC3T3E1 osteoblasts. In addition, $TNF-{\alpha}$/$IFN-{\gamma}$ stimulated ROS release in the osteoblasts. However, salicylate had no obvious effect on ROS release in DCFDA assay. The results showed that salicylate inhibited the activation of ERK and IKK, $I{\kappa}B$ degradation and NF-${\kappa}B$ activation independent of ROS release and suggested that salicylate exerts its anti-inflammatory action in part through inhibition of ERK, IKK, $I{\kappa}B$, $NF-{\kappa}B$ and resultant COX-2 expression pathway.

Effects of anti-inflammatory on Perilla frutescens var. crispa Induced by mutants with γ-Ray (감마선을 이용한 육종 차조기의 항염증 효과)

  • Sim, Boo-Yong;Park, Jung-Hyun;Kim, Sung-Kyu;Ji, Joong-Gu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.488-497
    • /
    • 2019
  • The purpose of this study was to confirmed anti-inflammatory effect the apple Induced by mutants with ${\gamma}-Ray$ extract. Cell viability was assessed by MTT assay using RAW 264.7 cells. The extracts measured through changes in the levels of reactive oxygen species (ROS), nitric oxide (NO), inflammatory cytokines, NF-kB, and COX-2 on LPS-induced RAW 264.7 cells. All test results were analyzed by ELISA reader, Luminex and RT-PCR. In result, the extracts was not toxic below in 25 ug/ml, and extracts was inhibited the productions nitric oxide, ROS, cytokines (IL-1b, IL-6, TNF-a), NF-kB and COX-2 in LPS-induced RAW 264.7 cells. Also, the expression levels were decreased on mRNA of $NF-{\kappa}B$ and COX-2. In other words, Perilla frutescens var. crispa Induced by mutants with ${\gamma}-Ray$ extracts showed significant anti-inflammatory effect. These results may be developed as a raw material for new health food and therapeutics to ease the related to the above mediators.

The Effects of Bee Venom and Melittin Solution on PGE2, COX-2, and NF-kB Dependent Luciferase Activity in RAW 264.7 Cells (봉약침액(蜂藥鍼液)과 Melittin 약침액(藥鍼液)이 RAW 264.7 세포의 PGE2, COX-2 및 NF-kB에 미치는 영향(影響))

  • Jeong, Il-kook;Song, Ho-sueb
    • Journal of Acupuncture Research
    • /
    • v.21 no.6
    • /
    • pp.19-36
    • /
    • 2004
  • Objective : The purpose of this study was to investigate the effect of Bee Venom and Melittin Solution on the lipopolysaccharide(LPS) and sodium nitroprusside(SNP)-induced expression of prostaglandin $E_2(PGE_2)$, cyclooxygenase-2(COX-2), nuclear factor kappa B($NF-{\kappa}B$) and nuclear factor kappa B($NF-{\kappa}B$) dependent luciferase activity in RAW 264.7 cells, a murine macrophage cell line. Methods : The expression of PGE2 was determined by determination of $PEG_2$, COX-2 was by western blotting with corresponding antibodies, $NF-{\kappa}B$ was by gel mobility shift assay method and $NF-{\kappa}B$ dependent luciferase activity was investigated by luciferase assay in RAW 264.7 cells. Results : 1. LPS and SNP-induced expression of $PEG_2$ was significant after 24hour. 2. The 0.5, 1 and $5{\mu}g/mL$ of bee venom and the 5 and $10{\mu}g/mL$ of melittin solution inhibited significantly LPS-induced expression of $PEG_2$ and, the $5{\mu}g/mL$ of bee venom and the 5 and $10{\mu}g/mL$ of melittin solution inhibited significantly SNP-induced expression of $PEG_2$ compared with control, respectively. The 0.5 and $1{\mu}g/mL$ of bee venom could not significantly inhibit SNP-induced expression of $PEG_2$ compared with control. 3. The $5{\mu}g/mL$ of bee venom and the 5 and $10{\mu}g/mL$ of melittin solution inhibited significantly LPS and SNP-induced expression of COX-2 compared with control, respectively. The 0.5 and $1{\mu}g/mL$ of bee venom inclined to decrease LPS and SNP-induced expression of COX-2 compared with control. 4. The 0.5, 1 and $5{\mu}g/mL$ of bee venom and the 5 and $10{\mu}g/mL$ of melittin solution inhibited significantly LPS and SNP-induced expression of $NF-{\kappa}B$ compared with control, respectively. 5. The 0.5, 1 and $5{\mu}g/mL$ of bee venom and the 5 and $10{\mu}g/mL$ of melittin solution inhibited significantly LPS-induced expression of $NF-{\kappa}B$ dependent luciferase activity and the 1 and $5{\mu}g/mL$ of bee venom and the 5 and $10{\mu}g/mL$ of melittin solution inhibited significantly SNP-induced expression of $NF-{\kappa}B$ dependent luciferase activity compared with control, respectively. The $NF-{\kappa}B$ inhibitor also inhibited significantly LPS and SNP-induced expression of $NF-{\kappa}B$ dependent luciferase activity compared with control. 6. The 0.5, 1 and $5{\mu}g/mL$ of bee venom and the 5 and $10{\mu}g/mL$ of melittin solution inhibited significantly LPS + IFN-${\gamma}$, TNF-${\alpha}$ and LPS + TNF-${\alpha}$-induced expression of $NF-{\kappa}B$ dependent luciferase activity compared with control, respectively. The $NF-{\kappa}B$ inhibitor also inhibited significantly LPS and SNP-induced expression of $NF-{\kappa}B$ dependent luciferase activity compared with control. Conclusions : These results suggest the inhibitory action of bee venom and melittin solution on the inflammatory mediators such as $PEG_2$, COX-2 and $NF-{\kappa}B$.

  • PDF

Comparison Study of White Ginseng, Red Ginseng, and fermented Red Ginseng on the Protective Effect of LPS-induced Inflammation in RAW 264.7 Cells (RAW 264.7 세포에서 LPS에 의해 유도된 염증에 대한 백삼, 홍삼, 발효홍삼의 항염효과에 대한 비교 연구)

  • Hyun, Mee-Sun;Hur, Jung-Mu;Shin, Yong-Seo;Song, Bong-Joon;Mun, Yeun-Ja;Woo, Won-Hong
    • Journal of Applied Biological Chemistry
    • /
    • v.52 no.1
    • /
    • pp.21-27
    • /
    • 2009
  • Red ginseng (RG) and fermented red ginseng (FRG) are produced from ginseng (GS) via certain biological processes. The main difference between three ginsengs is the composition of ginsenosides known as major metabolites having several biological activities. The concentration of the metabolites has been known to be dependent on the methods which make RG and FRG In this study, we investigated the effects of WG, RG and FRG on the productions of inflammatory proteins (NF-${\kappa}B$, iNOS, COX-2) and cytokines (TNF-$\alpha$, INF-$\gamma$) in LPS-stimulated RAW 264.7 cells. The levels of NO production and iNOS expression were suppressed by the treatment of white ginseng (WG), RG and FRG in LPS-stimulated cells. Also, the production of TNF-$\alpha$ and INF-$\gamma$ was decreased in the cells by all of them. It was indicated that the inhibition of NF-${\kappa}B$ activation in LPS-stimulated cells treated with three kinds of ginsengs was resulted from the suppression of the level of COX-2 expression and the phosphorylation of IkB by LPS. The present study indicated that RC showed the best biological activity among them and FRG was better than WG. The better activity of RG on the inhibition of NO production is considered to be caused by the difference of ginsenoside composition produced during their preparations. In order to elucidate the mechanism, animal test should be performed with three ginsengs.

Evaluation of Efficacy evaluation of Hwangryunhaedok-tang and Gungangbuja-tang on lipopolysaccharide (LPS)-induced inflammation mouse model (Lipopolysaccharide로 유도된 염증 mouse model에서의 황련해독탕(黃連解毒湯)과 건강부자탕(乾薑附子湯)의 효능평가)

  • Choi, You-Youn;Kim, Mi-Hye;Lee, Tae-Hee;Yang, Woong-Mo
    • Herbal Formula Science
    • /
    • v.20 no.2
    • /
    • pp.83-92
    • /
    • 2012
  • Objectives : The aim of this study was to evaluate the efficacy of Hwangryunhaedok-tang (HHT) and Gungangbuja-tang (GBT) on lipopolysaccharide (LPS)-induced mouse model of inflammation. HHT and GBT are one of the representative prescriptions of cold drug and one of the representative prescriptions of hot drug, respectively. For experimental evaluation of their efficacy, we investigated the anti-inflammatory effects of HHT and GBT on LPS-induced inflammation and the mechanisms of their action. Methods : ICR mice were given a HHT (50, 500 mg/kg), GBT (100, 1000 mg/kg) extract orally on three consecutive days. On the third day, they were administered LPS intraperitoneally (35 mg/kg), 1 h after the last sample administration. Blood and liver samples were taken 6 h after the LPS challenge. Cytokine expression and inflammation-related protein factor analyses were performed by Western blotting. Results : Oral administration of HHT significantly reduced pro-inflammatory cytokines, including interleukin (IL)-6, and interferon (IFN)-${\gamma}$ in the serum. While GBT inhibited an increase of IL-6, IFN-${\gamma}$ was not affected. Immunoblot analysis showed that LPS-induced NF-${\kappa}b$ activation was inhibited by GBT, meanwhile HHT only inhibited NF-${\kappa}b$ expression at high does (500 mg/kg). In addition, HHT and GBT inhibited LPS-induced phosphorylation of Erk1/2, Jnk and p38 MAPKs. GBT also significantly inhibited i-Nos and Cox-2 expression, and HHT inhibited only i-Nos expression. Conclusions : Both of HHT and GBT showed anti-inflammatory effects against LPS-induced endotoxemia. However, HHT significantly decreased inflammatory cytokine levels, such as IL-6 and IFN-${\gamma}$ more than GBT, while GBT significantly inhibited inflammatory proteins, including NF-${\kappa}b$, MAP Kinases, i-Nos and Cox-2, more than HHT. These results suggest that HHT and GBT regulate the different mechanisms of action and pathways, presumably by regulating cytokine levels (IL-6, IFN-${\gamma}$), NF-${\kappa}b$ activation, and several pro-inflammatory gene expression, although both of HHT and GBT have anti-inflammatory effects.

Perilla frutescens Sprout Extracts Protected Against Cytokine-induced Cell Damage of Pancreatic RINm5F Cells via NF-κB Pathway (들깨 새싹 추출물의 췌장 RINm5F 세포에서 NF-κB 경로를 통한 사이토카인에 의한 손상 예방 효과)

  • Kim, Da Hye;Kim, Sang Jun;Jeong, Seung-Il;Yu, Kang-Yeol;Cheon, Chun Jin;Kim, Jang-Ho;Kim, Seon-Young
    • Journal of Life Science
    • /
    • v.27 no.5
    • /
    • pp.509-516
    • /
    • 2017
  • Perilla frutescens (L.) Britton var. sprouts (PFS) is a plant of the labiatae family. The purpose of this work was to assess the preventive effects of PFS ethanolic extracts (PFSEs) on cytokine-induced ${\beta}$-cell damage. Cytokines, which are released by the infiltration of inflammatory cells around the pancreatic islets, are involved in the pathogenesis of type 1 diabetes mellitus. The combination of interleukin-$1{\beta}$ (IL-1), interferon-${\gamma}$ (IFN-${\gamma}$), and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) induced formation of reactive oxygen species (ROS). Accumulation of intracellular ROS led to ${\beta}$-cell dysfunction and apoptosis. PFSEs possess antioxidant activity and thus lead to downregulation of ROS generation. Cytokines decrease cell viability, stimulate the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and induce the production of nitric oxide (NO). PFSEs prevented cytokine-induced cell viability in a dose-dependent manner. Incubation with PFSE resulted in significant reduction in cytokine-induced NO production that correlated with reduced levels of the iNOS and COX-2 protein expression. Furthermore, PFSE significantly decreased the activation of nuclear factor ${\kappa}B$ (NF-${\kappa}B$) by inhibition of $I{\kappa}B{\alpha}$ phosphorylation in RINm5F cells. In summary, our results suggest that the protective effects of PFSE might serve to counteract cytokine-induced ${\beta}$-cell destruction. Findings indicate that consumption of Perilla frutescens (L.) Britton var. sprouts alleviates hyperglycemia-mediated oxidative stress and pro-inflammatory cytokine-induced ${\beta}$-cell damage and thus has beneficial anti-diabetic effects.

Inhibition of Lipopolysaccharide-Induced Expression of Inducible Nitric Oxide and Cyclooxygenase-2 by Aquaous of Aconitum pseudo-laeve var. erectum in RAW 264.7 Macrophages

  • Han, Myung-Soo;Lee, Jae-Hyok;Kim, Ee-Hwa
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.3
    • /
    • pp.678-683
    • /
    • 2008
  • Aconitum pseudo-laeve var. erectum has traditionally been used for the treatment of water retention in the body. Administration of the aqueous extract of Aconitum pseudo-laeve var. erectum has the efficiency of anti-inflammatory activity and modulates the intestinal immune system. However, the mechanism of anti-inflammatory action of Aconitum pseudo-laeve var. erectum has not been clarified yet. In the present study, the effect of Aconitum pseudo-laeve var. erectum against LPS-stimulated expressions of COX-2 and iNOS in cells of the murine RAW 264.7 macrophages was investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, reverse transcription- polymerase chain reaction (RT-PCR), PGE2 immunoassay, and NO detection. The results of the present study indicate that Aconitum pseudo-laeve var. erectum is a potent inhibitor of the LPS-induced NO and $PGE_{2}$ production by blocking iNOS and $NF{\kappa}B$ activation in RAW 264.7 macrophages. These findings suggest that Aconitum pseudo-laeve var. erectum is a potential therapeutic for the treatment of inflammatory syndrome.

Comparisons of Ginsenosides and Anti-inflammatory Effects of White Ginseng and Puffed Red Ginseng (인삼과 팽화홍삼의 Ginsenoside 함량 및 항염효과 비교)

  • Shin, Yong-Seo
    • Korean journal of food and cookery science
    • /
    • v.26 no.4
    • /
    • pp.475-480
    • /
    • 2010
  • In this study, the ginsenoside contents and anti-inflammatory effects of white ginseng (WG) and puffed red ginseng (PRG) were compared. The contents of Rb1, Rg5 and Rk1 were significantly higher in PRG than in WG, whereas the contents of Rg1 and Rb2 were decreased in PRG. The levels of NO production and iNOS expression were suppressed in LPS-stimulated cells by treatment with WG and PRG. Further, the production of cytokines (TNF-$\alpha$ and INF-$\gamma$) and inflammatory proteins (NF-${\kappa}B$ and COX-2) was decreased in cells upon treatment with any of the ginsenosides. The high NO inhibitory activity and cytokine production of PRG is caused by differences in the composition of ginsenosides produced.

Protective Effect of Protocatechuic Acid, Phenolic Compound of Momordica Charantia, against Oxidative Stress and Neuroinflammation in C6 Glial Cell (여주의 페놀성 화합물인 Protocatechuic Acid의 산화적 스트레스 개선 및 신경염증 보호 효과)

  • Kim, Ji-Hyun;Choi, Jung Ran;Cho, Eun Ju;Kim, Hyun Young
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.20 no.1
    • /
    • pp.10-19
    • /
    • 2020
  • Objectives: Oxidative stress-mediated neuroinflammation has been supposed as a crucial factor that contributes to the pathogenesis of many neurodegenerative diseases. In this study, we aimed to investigate the protective activity against oxidative stress and neuroinflammation of protocatechuic acid (PA), active phenolic compound from Momordica Charantia. Methods: Protective activity of PA from oxidative stress was performed under in vitro conditions. Our study investigated the protective mechanism of PA from neuroinflammation in cellular system using C6 glial cell. To investigate the improvement the effects on oxidative stress and neuroinflammation, we induced oxidative stress by H2O2 (100 μM) stimulation and induced neuroinflammation by treatment with lipopolysaccharide (LPS) (1 ㎍/mL) and interferon-gamma (IFN-γ) (10 ng/mL) in C6 glial cells. Results: PA showed strong radical scavenging effect against 1,1-dipenyl-2-picrylhydrazyl, hydroxy radical (·OH) and nitric oxide (NO). Under oxidative stress treated by H2O2, the result showed the increased mRNA expressions of oxidative stress markers such as nuclear factor-kappaB (NF-κB), cyclooxygenase (COX-2) and inducible nitric oxide (iNOS). However, the treatment of PA led to reduced mRNA expressions of NF-κB, COX-2 and iNOS. Moreover, PA attenuated the production of interleukin-6 and scavenged NO generated by both endotoxin LPS and IFN-γ together. Furthermore, it also reduced LPS and IFN-γ-induced mRNA expressions of iNOS and COX-2. Conclusions: In conclusion, our results collectively suggest that PA, phenolic compound of Momordica Charantia, could be a safe anti-oxidant and a promising anti-neuroinflammatory molecule for neurodegenerative diseases.

Anti-inflammatory Effect of Quercus Salicina in IFN-${\gamma}$/LPS-stimulated Mouse Peritoneal Macrophage

  • Cho, Kyung-Hee;Choi, Jae-Hyuk;Jeon, Hoon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.3
    • /
    • pp.540-545
    • /
    • 2011
  • Quercus salicina has been widely used as a traditional medicine for the treatment of various diseases. In macrophages, nitric oxide (NO) is released as an inflammatory mediator and has been proposed to be an important modulator of many pathophysiological conditions in inflammation. In the present study, the inhibitory effect of methanolic extracts of Q. salicina (QSM) on NO production in LPS-stimulated mouse (C57BL/6) peritoneal macrophages was investigated. QSM suppressed NO production without notable cytotoxiciy. QSM also exhibited down-regulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression via attenuation of NF-${\kappa}B$ translocation to nucleus in rIFN-${\gamma}$ and LPS stimulated mouse peritoneal macrophages. The present study strongly suggest that Q. salicina may be beneficial in diseases which related to macrophage-mediated inflammatory disorders.