• Title/Summary/Keyword: COX-1 activity

Search Result 676, Processing Time 0.041 seconds

Physiological Activities of Peel of Jeju-indigenous Citrus sunki Hort. Tanaka (제주자생 진귤(Citrus sunki Hort. Tanaka) 과피의 생리활성)

  • Kang, Shin-Hae;Lee, Young-Jae;Lee, Chang-Hong;Kim, Se-Jae;Lee, Dae-Ho;Lee, Young-Ki;Park, Deok-Bae
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.983-988
    • /
    • 2005
  • Effects of Citrus sunki peel and its fermented product extracts on physiological and functional activities of cellular systems were investigated. Ethanol extract of Citrus sunki peel showed potent ROS-scavenging activity using 2',7'-Dichlorofluorescin diacetate as a fluorescent ROS probe in HepG2 cells. Fermented product of C. sunki peel extract markedly suppressed nitric oxide production in lipopolysaccharide (LPS)-activated RAW264.7 murine macrophage cells. Treatment with fermented product of C. sunki peel extract decreased intracellular protein levels of inducible nitric oxide synthase and cyclooxygenase II stimulated by LPS. High doses of fermented product lend to apoptotic cell death in CHO-IR cells.

Antioxidant and Anti-inflammatory Effects of Plantago asiatica L. Extract (질경이 추출물의 항산화 및 항염증 활성)

  • Choi, Yukyung;Choo, Byung-Kil
    • Korean Journal of Organic Agriculture
    • /
    • v.32 no.1
    • /
    • pp.91-105
    • /
    • 2024
  • Plantago asiatica L. (P. asiatica) is a perennial plant belonging to the plantaginaceae and is useful in treating a various diseases such as wounds, bronchitis, and chronic constipation. The bioactive effects of P. asiatica extract was evaluated to determine its potential for use as a variety materials in the food, pharmaceutical, and agricultural industries. Polyphenol and flavonoid contents, free radical scavenging, reducing power activity, and reactive oxygen species (ROS) expression were measured to identify the antioxidative activity. Anti-inflammatory effects were evaluated via analysis of nitric oxide (NO) and pro-inflammatory protein expression in LPS-induced RAW 264.7 cell. As a result of measuring the antioxidant activities of the P. asiatica extract, the total polyphenol content was 50.91±0.78 mg gallic acid equivalents/g and the flavonoid content was 100.99±0.44 mg rutin equivalents/g, and both DPPH and ABTS radical scavenging activities and reducing power increased depending on the concentration. Also, intracellular ROS production was inhibited by the P. asiatica extract. No cytotoxicity was observed when P. asiatica extract was treated, and NO and inflammatory protein expression were inhibited, and nuclear factor kappa B (NF-κB) phosphorylation was also inhibited in a concentration-dependent manner. In conclusion, P. asiatica is a functional natural resources of antioxidant and anti-inflammatory agents that can be used in various industries, including food and agriculture.

Fermentation Properties and Increased Health Functionality of Kimchi by Kimchi Lactic Acid Bacteria Starters (김치 유산균 Starter를 이용한 김치의 발효 특성 및 기능성 증진 효과)

  • Bong, Yeon-Ju;Jeong, Ji-Kang;Park, Kun-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.11
    • /
    • pp.1717-1726
    • /
    • 2013
  • Fermentation characteristics and health functionalities of kimchi by inoculating kimchi lactic acid bacteria (LAB) starters were studied. We manufactured single LAB starter kimchi (Lactobacillus plantarum pnuK, Lactobacillus plantarum 3099K, Leuconostoc mesenteroides pnuK), mixed LAB starter kimchi (Lb. plantarum pnu/Leu. mesenteroides pnuK, Lb. plantarum 3099/Leu. mesenteroides pnuK) with inoculum size of $10^6$ CFU/g, as well as naturally fermented kimchi (NK), and fermented them for 6 days at $15^{\circ}C$. The pH and acidity of the early phase of fermentation were not different, but kimchi with the starters showed rapid changes in the pH and acidity from 2 days of fermentation. As the fermentation progressed, the level of total aerobic bacteria and Lactobacillus sp. increased similarly with or without Lb. plantarum (LP) inoculation. However, the level of Leuconostoc sp. was high in kimchi inoculated with Leuconostoc sp. starter. In the sensory evaluation test, kimchi with starters received higher overall acceptability scores than those of NK; mixed starter added kimchi earned the highest score. In DPPH and hydroxyl radical scavenging activity, kimchi with the starters exhibited higher activity than that of NK. In the MTT assay of HCT-116 and HT-29 human colon cancer cells, NK showed inhibition rates of 63.4 and 51.9%, but LPpnuK achieved 77.1 and 68.8%, respectively. This study showed that inoculating starters in kimchi increased in vitro antioxidant and anticancer activities, and single starter (LP) added kimchi revealed higher functionality than the kimchi with mixed starter. Kimchis with the starters effectively up-regulated the gene expressions of the pro-apoptotic gene of Bax, but down-regulated Bcl-2. They promoted expressions of p53 and p21, and suppressed expressions of inflammation-related genes, iNOS and COX-2, compared with NK. Taken together, it is expected that using starters may help manufacture kimchi with improved sensory quality and health functionality.

Anti-inflammatory Effect of Flavonoids Kaempferol and Biochanin A-enriched Extract of Barnyard Millet (Echinochloa crus-galli var. frumentacea) Grains in LPS-stimulated RAW264.7 Cells (마우스 대식 세포주 RAW264.7에 있어서 LPS처리에 의해 유도되는 염증반응에 대한 식용피(Echinochloa crus-galli var. frumentacea)의 저해효과)

  • Lee, Ji Young;Jun, Do Youn;Yoon, Young Ho;Ko, Jee Youn;Woo, Koan Sik;Woo, Mi Hee;Kim, Young Ho
    • Journal of Life Science
    • /
    • v.24 no.11
    • /
    • pp.1157-1167
    • /
    • 2014
  • In order to compare the anti-inflammatory effects of five selected cereal grains-proso millet, hwanggeumchal sorghum, foxtail millet, barnyard millet, and adlay-the inhibitory activities of 80% ethanol (EtOH) extracts obtained from the individual grains on lipopolysaccharide (LPS)-induced nitric oxide (NO) generation were investigated in RAW264.7 cells. The EtOH extract of barnyard millet (Echinochloa crus-galli var. frumentacea) grains exhibited more potent anti-inflammatory activity than that of the other grains. When the EtOH extract of barnyard millet grains was sequentially fractionated with n-hexane, methylene chloride (MC), ethyl acetate (EtOAc), and n-butanol, the majority of the anti-inflammatory activity was detected in the MC fraction, followed by the EtOAc fraction. Pretreatment with the MC fraction caused downregulation of the expression levels of iNOS- and COX-2-specific transcripts and proteins, as well as proinflammatory cytokine gene transcripts (IL-$1{\beta}$, IL-6, and TNF-${\alpha}$) in LPS-stimulated RAW264.7 cells. Additionally, the MC fraction could suppress not only the LPS-induced nuclear translocation of cytosolic NF-kB, but also the LPS-induced activation of MAPKs, such as ERK, JNK, and p38MAPK. Further analysis of the MC fraction by HPLC identified kaempferol, biochanin A, and formononetin as the major phenolic components. Both kaempferol and biochanin A, but not formononetin, could exert anti-inflammatory effect at the same concentrations as those of the MC fraction. Consequently, these results indicate that kaempferol and biochanin A are among the most effective anti-inflammatory phenolic components in barnyard millet grains. This finding suggests that barnyard millet grains and the MC extract enriched in kaempferol and biochanin A could be beneficial functional food sources that have an anti-inflammatory effect.

Anti-inflammatory effect of barley leaf ethanol extract in LPS-stimulated RAW264.7 macrophage (LPS로 자극한 RAW264.7 대식세포에서 보리순 에탄올 추출물의 항염증 효과)

  • Kim, Mee-Kyung;Kim, Dae-Yong
    • Food Science and Preservation
    • /
    • v.22 no.5
    • /
    • pp.735-743
    • /
    • 2015
  • This study investigated the anti-inflammatory activity of barley leaf extract in lipopolysaccharide (LPS)-stimulated RAW264.7 cells and hairless mice. Pre-treatment with barley leaf extract significantly inhibited the protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-II (COX-II) in a dose-dependent manner in LPS-stimulated RAW264.7 cells. Barley leaf extract also significantly inhibited the secretion of inflammatory cytokines, such as tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin-$1{\beta}$ (IL-$1{\beta}$), and interleukin-6 (IL-6). Moreover, phosphorylation of mitogen-activated protein kinases (MAPKs) and nuclear translocation of nuclear factor-kappa B (NF-${\kappa}B$) were strongly suppressed by barley leaf extract in LPS-stimulated cells. In hairless mice, barley extract significantly decreased the pathological phenotypes of contact dermatitis, such as erythema, edema, and scabs. These results indicate that barley leaf extract has an anti-inflammatory effect and therefore a possible role in the treatment of inflammatory diseases or in functional cosmetics.

Anti-inflammatory Activity of Antimicrobial Peptide Zophobacin 1 Derived from the Zophobas atratus (아메리카왕거저리 유래 항균 펩타이드 조포바신 1의 항염증활성)

  • Shin, Yong Pyo;Lee, Joon Ha;Kim, In-Woo;Seo, Minchul;Kim, Mi-Ae;Lee, Hwa Jeong;Baek, Minhee;Kim, Seong Hyun;Hwang, Jae Sam
    • Journal of Life Science
    • /
    • v.30 no.9
    • /
    • pp.804-812
    • /
    • 2020
  • The giant mealworm beetle, Zophobas atratus (Coleoptera: Tenebrionidae) has been used as a protein source for small pets and mammals. Recently, it was temporarily registered in the list of the Food Code. We previously performed an in silico analysis of the Zophobas atratus transcriptome to identify putative antimicrobial peptides and identified several antimicrobial peptide candidates. Among them, we assessed the antimicrobial and anti-inflammatory activities of zophobacin 1 that was selected bio-informatically based on its physicochemical properties against microorganisms and mouse macrophage Raw264.7 cells. Zophobacin 1 showed antimicrobial activities against microorganisms without inducing hemolysis and decreased the nitric oxide production of the lipopolysaccharide-induced Raw264.7 cells. Moreover, ELISA and Western blot analysis revealed that zophobacin 1 reduced expression levels of pro-inflammatory enzymes such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). We also investigated expression of pro-inflammatory cytokines (interleukin-6 and interleukin-1β) production through quantitative real time-PCR and ELISA. Zophobacin 1 markedly reduced the expression level of cytokines through the regulation of mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B (NF-κB) signaling. We confirmed that zophobacin 1 bound to bacterial cell membranes via a specific interaction with lipopolysaccharides. These data suggest that zophobacin 1 could be promising molecules for development as antimicrobial and anti-inflammatory therapeutic agents.

$PPAR{\gamma}$ Inhibits Inflammation through the Suppression of ERK1/2 Kinase Activity in Human Gingival Fibroblasts

  • Lee, Young-Hee;Kwak, Dong-Hoon;Kang, Min-Soo;Bhattarai, Govinda;Lee, Nan-Hee;Jhee, Eun-Chung;Yi, Ho-Keun
    • International Journal of Oral Biology
    • /
    • v.35 no.1
    • /
    • pp.27-33
    • /
    • 2010
  • Periodontal disease is a major oral disorder and comprises a group of infections that lead to inflammation of the gingiva and the destruction of periodontal tissues. $PPAR{\gamma}$ plays an important role in the regulation of several metabolic pathways and has recently been implicated in inflammatory response pathways. However, its effects on periodontal inflammation have yet to be clarified. In our current study, we evaluated the anti-inflammatory effects of $PPAR{\gamma}$ on periodontal disease. Human gingival fibroblasts (HGFs) treated with lipopolysaccharide (LPS) showed high levels of intracellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), matrix metalloproteinase-2 (MMP-2), and -9 (MMP-9). Moreover, these cells also showed upregulated activities for extracellular signal regulated kinase (ERK1/2), inducible nitric oxide synthase (iNOS) and cyclooxygnase-2. However, cells treated with Ad/$PPAR{\gamma}$ and rosiglitazone in same culture system showed reduced ICAM-1, VCAM-1, MMP-2, -9 and COX-2. Finally, the anti-inflammatory effects of $PPAR{\gamma}$ appear to be mediated via the suppression of the ERK1/2 pathway and consequent inhibition of NF-kB translocation. Our present findings thus suggest that $PPAR{\gamma}$ indeed has a pivotal role in gingival inflammation and may be a putative molecular target for future therapeutic strategies to control chronic periodontal disease.

Dietary supplementation with combined extracts from garlic (Allium sativum), brown seaweed (Undaria pinnatifida), and pinecone (Pinus koraiensis) improves milk production in Holstein cows under heat stress conditions

  • Lee, Jae-Sung;Kang, Sukyung;Kim, Min-Jeong;Han, Sung-Gu;Lee, Hong-Gu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.1
    • /
    • pp.111-119
    • /
    • 2020
  • Objective: This study was conducted to examine the effects of a mixture of pinecone oil, garlic, and brown seaweed extracts (PGBE) on milk production traits as well as physiological and ethological parameters in Holstein cows during the summer season (24 May to 03 July 2015, Korea). Methods: Among the extract combinations tested, we found that the level of 2,2'-azino-bis (3-ethylberzothiazoline-6-sulphonic acid) cation radical scavenging activity of the 0.16% PBGE complex at ratio of 1:1:1 (vol/vol) was comparable to that of the control (ascorbic acid; 1 mg/mL). Additionally, the PBGE complex reduced lipopolysaccharide-induced COX-2 expression in bovine mammary epithelial cells. Based on these findings, 40 lactating Holstein cows were used to measure the effects of PBGE complex at ratio of 1:1:1 (vol/vol) on milk production, immune response, metabolites, and behavior patterns by dividing the cows into two groups fed diets containing PGBE complex (n = 20; 0.016%/kg feed dry matter basis) or not containing PGBE complex (control, n = 20) for 40 d. Results: Results showed that PGBE complex did not influence milk composition, eating and ear surface temperature patterns, immune response, or metabolic parameters but promoted average milk yield throughout the experimental period. Additionally, a tendency of higher total antioxidant capacity and glutathione in the PGBE group was observed compared to the those in the control. When the temperature-humidity index (THI) exceeded 72 (average THI = 73.8), PGBE complex-fed cows experiencing heat stress showed increased milk yield and a tendency of increased rumination compared to the control. Conclusion: We suggest that incorporation of a combined mixture of 0.016% PGBE (1:1:1 ratio, vol/vol) to diet has the potential to improve milk yield and health status of cows under mild to moderate heat stress, denoting that it might be useful as an alternative anti-stressor in the diet of dairy cows under hot conditions.

Anti-inflammatory Activity of Antimicrobial Peptide Papiliocin 3 Derived from the Swallowtail Butterfly, Papilio xuthus (호랑나비 유래 항균 펩타이드 파필리오신 3의 항염증 활성)

  • Shin, Yong Pyo;Lee, Joon Ha;Kim, In-Woo;Seo, Minchul;Kim, Mi-Ae;Lee, Hwa Jeong;Baek, Minhee;Kim, Seong Hyun;Hwang, Jae Sam
    • Journal of Life Science
    • /
    • v.30 no.10
    • /
    • pp.886-895
    • /
    • 2020
  • The development of novel peptide antibiotics with potent antimicrobial activity and anti-inflammatory activity is urgently needed. In a previous work, we performed an in-silico analysis of the Papilio xuthus transcriptome to identify putative antimicrobial peptides and identified several candidates. In this study, we investigated the antibacterial and anti-inflammatory activities of papiliocin 3, which was selected bioinformatically based on its physicochemical properties against bacteria and mouse macrophage Raw264.7 cells. Papiliocin 3 showed antibacterial activities against E. coli and S. aureus without inducing hemolysis and decreased the nitric oxide production of the lipopolysaccharide-induced Raw264.7 cells. Moreover, ELISA and Western blot analysis revealed that papiliocin 3 reduced the expression levels of pro-inflammatory enzymes, such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and prostaglandin E2 (PGE2). In addition, we examined whether papiliocin 3 could inhibit the expression of pro-inflammatory cytokines (interleukin-6 and interleukin-1β) in LPS-induced Raw264.7 cells. We found that papiliocin 3 markedly reduced the expression level of cytokines through the regulation of mitogen-activated protein kinases (MAPK) and nuclear factor kappa B (NF-κB) signaling. We also confirmed that papiliocin 3 binds to bacterial cell membranes via a specific interaction with lipopolysaccharides. Collectively, these findings suggest that papiliocin 3 could be a promising molecule for development as a novel peptide antibiotic.

Gastroprotective Activity of Curcumae Longae Rhizoma against Gastric Ulcer in Mice (위궤양 유발 마우스모델에서 강황(薑黃) 추출물의 위 보호 효과)

  • Oh, Min Hyuck;Kim, Min Ju;Shin, Mi-Rae;Park, Hae-Jin;Seo, Bu-Il;Roh, Seong-Soo
    • The Korea Journal of Herbology
    • /
    • v.35 no.3
    • /
    • pp.17-24
    • /
    • 2020
  • Objectives : The objective of this study was to evaluate the gastric protective effect of Curcuma Longae Rhizoma (CLR) in 150 mM HCl/60% ethanol induced gastric ulcer (GU) in mice. Methods : Forty ICR mice were divided into five groups (n=8/Group): Nor group; Normal, Veh group; GU control, SC group; GU + sucralfate 10 mg/kg, CL; GU + CLR 30% ethanol extract 100 mg/kg, CH group; GU + CLR 30% ethanol extract 200 mg/kg. Then, mice were orally administered with 150 mM HCl/60% ethanol and caused GU. After 1 hr, mice were sacrificed, and blood and stomach tissue were collected. Results : CLR showed significance scavenging effects in 1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azinobis-3-ethyl-benzothiazoline-6-sulfonic acid (ABTS) radical scavenging activities (DPPH IC50; 78.18 ± 0.60 ㎍/㎖, ABTS IC50; 55.91 ± 1.86 ㎍/㎖). CLR significance reduce inflammatory-related factors such as cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β), and interleukin-6 (IL-6) via nuclear factor kappa B (NF-κB) inactivation. In addition, the activation of nuclear factor erythroid2-related factor 2 (Nrf2) significantly led to up-regulation of anti-oxidant enzymes including factors heme oxygenase-1 (HO-1), super oxide dismutase (SOD), and glutathione peroxidase-1/2 (GPx-1/2). Conclusions : Our discovery provides that CLR possesses anti-oxidant and anti-inflammatory effects. Hence, CLR may ameliorate the development of gastric ulcer though the inhibition of NF-κB inflammatory pathway and the elevation of Nrf2 anti-oxidant pathway.