• Title/Summary/Keyword: COX-1 activity

Search Result 676, Processing Time 0.032 seconds

Antioxidative Effects of Lycium chinense Miller on Cisplatin-induced Nephrotoxicity in Rats (Cisplatin으로 유도된 급성신부전증에 대한 지골피(地骨皮)의 항산화효과)

  • Jung, Yu-Sun;Park, Chan-Hum;Shin, Hyeon-Cheol
    • The Journal of Internal Korean Medicine
    • /
    • v.35 no.1
    • /
    • pp.92-105
    • /
    • 2014
  • Objectives : Cisplatin is a widely used cancer therapy drug. However, nephrotoxicity resulting in increased oxidative stress is a major side effect of cisplatin chemotherapy, thereby limiting its chemotherapeutic use. Lycium chinense Miller (LCM) has been used as a traditional herbal medicine in various febrile and inflammatory diseases such as night sweat, cough, nosebleed, bronchitis, pulmonary tuberculosis, etc. In this study we investigated the protective and antioxidative potential of LCM against cisplatin-induced nephrotoxicity in rats. Methods : Twenty-four 8-week-old male Wistar rats were divided into four groups: normal untreated; cisplatin treatment only; LCM 10 mg/kg plus cisplatin treatment; and LCM 30 mg/kg plus cisplatin treatment. Twenty-four hours after the last cisplatin injection, all the rats were sacrificed, and serological changes were evaluated. The levels of NF-${\kappa}B$ activity and NOX-4, $p47^{phox}$, $p22^{phox}$, COX-2, iNOS, SOD, catalase expressions were analyzed in Western blot analysis. Results : Cisplatin injection caused an increase in the BUN level, which is a reliable indicator of renal toxicity. The levels of BUN, renal ROS, and renal TBARS were significantly reduced in the LCM groups compared with the cisplatin-only groups. The levels of $p47^{phox}$ and $p22^{phox}$, which are NADPH oxidase subunits, were increased in the cisplatin-only groups, whereas they were decreased in the LCM groups. The levels of renal NF-${\kappa}B$ activity and COX-2, iNOS expressions were increased significantly in the cisplatin-only groups compared with the normal groups, whereas they were decreased in the LCM groups. Compared with the cisplatin-only groups, renal GSH and GSH/GSSG increased in the LCM groups. Also, the administration of LCM increased levels of SOD and catalase as compared with the cisplatin-only groups. Conclusions : These results suggest that LCM protects cisplatin-induced nephrotoxicity via a mechanism that may involves the inhibition of oxidative stress by the activation of antioxidants.

Inhibitory effect of Angelica gigas extract powder on induced inflammatory cytokines in rats osteoarthritis (참당귀 추출분말의 골관절염 흰쥐의 염증성 사이토카인류의 억제활성)

  • Kwon, Jin-Hwan;Han, Min-Seok;Lee, Bu-Min;Lee, Yong-Moon
    • Analytical Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.260-269
    • /
    • 2015
  • The protective effects of extract powder of Angelica gigas on the degeneration of the articular cartilage in rats was investigated with monosodium iodoacetate (MIA)-induced osteoarthritis, The treatment of high concentration (50 μg/mL) of Angelica gigas effectively inhibited nitric oxide (NO) production induced by interleukin-1α (IL-1α) without any cytotoxicity. Specifically, mRNA and protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were dose dependently reduced by extract powder of Angelica gigas. Importantly, mRNA expression in articular cartilage of inflammatory cytokines, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) were clearly reduced. The inflammatory cytokines in blood were also reduced as well. These results suggested that the protective effects on the degeneration of the articular cartilage was derived from the inhibitory effects of mRNA and protein expression of tested inflammatory cytokines which is linked to prevent the degradation of proteoglycan (PG), the main matrix content in articular cartilage. Meanwhile, the 2 hrs incubation of decursin, a major compound of extract powder in rat whole blood rapidely converted decursin into decursinol which shows string anti-inflammatory activity. The coverted decursinol was detected after 8 hrs in whole blood by LC-MS/MS. Conclusively, the inhibitory effects of inflammatory cytokines production in osteoarthritis may be derived from the production of decursinol, which performs against inflammatroy cytokines like TNF-α, IL-1β, and IL-6.

Functional Investigation of Ogaza Extract (오가자 추출물의 기능성 검정)

  • Jung, Sung-Keun;Lee, Hyong-Joo
    • Food Engineering Progress
    • /
    • v.14 no.2
    • /
    • pp.183-187
    • /
    • 2010
  • Multiple lines of study have shown that Acanthopanax species have anti-oxidant and chemopreventive effect. However, the suitability of Acanthopanax sessilifloru fruit (Ogaza) as a functional food source remains to be investigated. Therefore, we have investigated the effect of Ogaza as an anti-oxidant and anti-inflammatory substance. The phenolic content of Ogaza is 56.1${\pm}$5.2 mg gallic acid equivalents (GAE) per 1 g of Ogaza. The 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid (ABTS) radical scavenging effects of Ogaza extract at 0.25, 0.5, 1, or 2 mg/mL were 34.0, 73.0, 194.3, or 339.7 $\mu g$/mL vitamin C equivalent antioxidnat capacity (VCEAC), respectively. Ogaza extract (1 or 2 mg/mL) inhibited LPS-induced TNF-$\alpha$ production (decrease of 22${\pm}$2% or 19${\pm}$6%, respectively). It also inhibited LPS-induced IL-6 production (decrease of 18${\pm}$2% or 24${\pm}$3%, respectively). In addition, Ogaza extract (0.25, 0.5, 1, or 2 mg/mL) inhibited COX-2 luciferase activity (decrease of 80${\pm}$1%, 83.${\pm}$7%, 96${\pm}$4%, or 98${\pm}$2%, respectively). Overall, these results indicated that Ogaza is promising as a functional food source due to its antioxidant and anti-inflammatory effects.

Acacia ferruginea Inhibits Tumor Progression by Regulating Inflammatory Mediators-(TNF-α, iNOS, COX-2, IL-1β, IL-6, IFN-γ, IL-2, GM-CSF) and Pro-Angiogenic Growth Factor-VEGF

  • Sakthivel, Kunnathur Murugesan;Guruvayoorappan, Chandrasekaran
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.6
    • /
    • pp.3909-3919
    • /
    • 2013
  • The aim of the present investigation was to evaluate the effect of A ferruginea extract on Dalton's lymphoma ascites (DLA) induced tumours in BALB/c mice. Experimental animals received A ferruginea extract (10 mg/kg.b.wt) intraperitoneally for 14 consecutive days after DLA tumor challenge. Treatment with extract significantly increased the life span, total white blood cell (WBC) count and haemoglobin (Hb) content and decreased the level of serum aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), gamma glutamyl transferase (${\gamma}$-GT) and nitric oxide (NO) in DLA bearing ascites tumor models. In addition, administration of extract significantly decreased the tumour volume and body weight in a DLA bearing solid tumor model. The levels of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-${\alpha}$), interleukin-1 beta (IL-$1{\beta}$), interleukin-6 (IL-6) and granulocyte monocyte-colony stimulating factor (GM-CSF), as well as pro-angiogenic growth factors such as vascular endothelial growth factor (VEGF) and inducible nitric oxide synthase (iNOS) were elevated in solid tumour controls, but significantly reduced by A ferruginea administration. On the other hand, the extract stimulated the production of interleukin-2 (IL-2) and interferon-gamma (IFN-${\gamma}$) in animals with DLA induced solid tumours. Increase in $CD4^+$ T-cell population suggested strong immunostimulant activity for this extract. GC/MS and LC/MS analysis showed quinone, quinoline, imidazolidine, pyrrolidine, cyclopentenone, thiazole, pyrazole, catechin and coumarin derivatives as major compounds present in the A ferruginea methanolic extract. Thus, the outcome of the present study suggests that A ferruginea extract has immunomodulatory and tumor inhibitory activities and has the potential to be developed as a natural anticancer agent.

Intestinal anti-inflammatory activity of Sasa quelpaertensis leaf extract by suppressing lipopolysaccharide-stimulated inflammatory mediators in intestinal epithelial Caco-2 cells co-cultured with RAW 264.7 macrophage cells

  • Kim, Kyung-Mi;Kim, Yoo-Sun;Lim, Ji Ye;Min, Soo Jin;Ko, Hee-Chul;Kim, Se-Jae;Kim, Yuri
    • Nutrition Research and Practice
    • /
    • v.9 no.1
    • /
    • pp.3-10
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, involves chronic inflammation of the gastrointestinal tract. Previously, Sasa quelpaertensis leaves have been shown to mediate anti-inflammation and anti-cancer effects, although it remains unclear whether Sasa leaves are able to attenuate inflammation-related intestinal diseases. Therefore, the aim of this study was to investigate the anti-inflammatory effects of Sasa quelpaertensis leaf extract (SQE) using an in vitro co-culture model of the intestinal epithelial environment. MATERIALS/METHODS: An in vitro co-culture system was established that consisted of intestinal epithelial Caco-2 cells and RAW 264.7 macrophages. Treatment with lipopolysaccharide (LPS) was used to induce inflammation. RESULTS: Treatment with SQE significantly suppressed the secretion of LPS-induced nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$), IL-6, and IL-$1{\beta}$ in co-cultured RAW 264.7 macrophages. In addition, expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, and tumor necrosis factor (TNF)-${\alpha}$ were down-regulated in response to inhibition of $I{\kappa}B{\alpha}$ phosphorylation by SQE. Compared with two bioactive compounds that have previously been identified in SQE, tricin and P-coumaric acid, SQE exhibited the most effective anti-inflammatory properties. CONCLUSIONS: SQE exhibited intestinal anti-inflammatory activity by inhibiting various inflammatory mediators mediated through nuclear transcription factor kappa-B (NF-kB) activation. Thus, SQE has the potential to ameliorate inflammation-related diseases, including IBD, by limiting excessive production of pro-inflammatory mediators.

Anti-inflammatory Activity of Extracts from Ultra-Fine Ground Saururus chinensis Leaves in Lipopolysaccharide-Stimulated Raw 264.7 Cells

  • Kim, Dong-Hee;Cho, Jun-Hyo;Cho, Young-Je
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.1
    • /
    • pp.37-43
    • /
    • 2016
  • Bioactive components of ultra-fine ground Saururus, the extraction yield increases when the leaves are ultra-fine ground. Comparison of normal-ground and ultra-fine ground Saururus chinensis leaves showed that the solid content and antiinflammatory activity of ultra-fine ground extracts was higher than that of normal-ground extracts. Lipopolysaccharide (LPS)-stimulated Raw 264.7 cells were treated with different concentrations of Saururus chinensis extract and the amount of nitric oxide (NO) was determined; LPS-treated cells produced 2 times more NO than cells that were not treated with LPS. Moreover, the NO production in cells treated with Saururus chinensis extract was inhibited in a concentration-dependent manner. Because the stimulant-induced NO production is regulated by the inducible nitric oxide synthase (iNOS), we measured the iNOS protein level to elucidate the mechanism by which the NO production was inhibited. We found that the amount of iNOS decreased dose-dependently. It was reduced by 53% at a Saururus chinensis extract concentration of $100{\mu}g/mL$. The protein expression of cyclooxygenase-2 (COX-2) in LPS-treated Raw 264.7 cells was inhibited by 31% at $100{\mu}g/mL$ of Saururus chinensis extract. Gel shift of the nuclear factor kappa B-DNA complex occurred in LPS-treated cells and the intensity of the band decreased gradually in a concentration-dependent manner. Ultra-fine ground Saururus chinensis extract had a concentration-dependent inhibitory effect on the production of prostaglandin $E_2$, tumor necrosis factor ${\alpha}$, interleukin $1{\beta}$ (IL-$1{\beta}$), IL-6, and IL-8 in LPS-treated Raw 264.7 cells, i.e., at $50{\mu}g/mL$ of Saururus chinensis extract, their levels were decreased by 53, 67, 52, 37, and 21% respectively.

Anti-inflammatory effect of ozonated krill (Euphausia superba) oil in lipopolysaccharide-stimulated RAW 264.7 macrophages

  • Kim, Hong-Deok;Lee, Soo-Bin;Ko, Seok-Chun;Jung, Won-Kyo;Kim, Young-Mog;Kim, Seon-Bong
    • Fisheries and Aquatic Sciences
    • /
    • v.21 no.6
    • /
    • pp.15.1-15.9
    • /
    • 2018
  • Background: Inflammation has been known to associate with many human diseases. The objective of this study was to evaluate an anti-inflammatory effect of ozonated krill (Euphausia superba) oil, which was prepared by the treatment of krill oil using ozone gas. The anti-inflammatory activity was evaluated in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Results: Ozonated krill oil significantly inhibited nitric oxide (NO) production and suppressed the mRNA and protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in LPS-stimulated RAW 264.7 macrophages. Ozonated krill oil also reduced the mRNA expression of inflammatory cytokines such as interleukin (IL)-$1{\beta}$, IL-6, and tumor necrosis factor (TNF)-${\alpha}$ in LPS-stimulated RAW 264.7 macrophages. To elucidate the mechanism underlying the anti-inflammatory activity of ozonated krill oil, we evaluated the effects of ozonated krill oil on the activation of mitogen-activated protein kinases (MAPKs) pathway. Ozonated krill oil suppressed the LPS-stimulated phosphorylation of p38 MAPK and c-Jun N-terminal kinases (JNK). Conclusion: This study revealed that the ozonated krill oil exhibited an anti-inflammatory effect in LPS-stimulated RAW 264.7 macrophages. To the best of our knowledge, this is the first report that ozonated krill oil suppressed pro-inflammatory mediator and cytokine expression in LPS-stimulated RAW 264.7 macrophages by inhibiting the phosphorylation of p38 MAPK and JNK.

Anti-inflammatory Activity on LPS-stimulated in vitro RAW 264.7 Cells and in vivo Zebrafish of Heterosigma akshiwo

  • Kim, Junseong;Choi, Youn Kyung;Lee, Ji-Hyeok;Kim, Seo-Young;Kim, Hyun-Soo;Jeon, You-Jin;Heo, Soo-Jin
    • Journal of Chitin and Chitosan
    • /
    • v.22 no.3
    • /
    • pp.185-193
    • /
    • 2017
  • Red tide Heterosigma akashiwo (H. akashiwo), a microscopic alga of the class Raphidophyceae, causes extensive damage to all marine ecosystems. It is essential to reduce the damage to marine ecosystems for them to be used as a resource. In this study, we used organic solvent fractionation to obtain an ethyl acetate-methanol extract from H. akashiwo (HAEM80) and then evaluated its anti-inflammatory activity in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and a zebrafish model. HAME80 markedly inhibited the production of nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$). It also down-regulated the protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and decreased the secretion of interleukin-$1{\beta}$ ($IL-1{\beta}$) in LPS-stimulated RAW 264.7 cells. HAME80 reduced yolk edema and improved the survival rate of LPS-stimulated zebrafish embryos; in addition, the extract significantly reduced the production of ROS and NO and attenuated cell death in this model. Gas chromatography-mass spectrometry (GC-MS) of the extract was used to confirm the identity of peaks 1-20. Taken together, our data suggest that H. akashiwo is a beneficial anti-inflammatory agent.

Inhibition of Human Periodontal Stem Cell Death Following the Antioxidant Action of Celecoxib (Celecoxib의 항산화 작용에 따른 성체 치주인대 줄기세포 사멸억제)

  • Kyung-Hee Lee
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.11 no.2
    • /
    • pp.169-179
    • /
    • 2023
  • Purpose : Although human periodontal ligament stem cells (hPDLSCs) are a supportive factor for tissue engineering, oxidative stress during cell culture and transplantation has been shown to affect stem cell viability and mortality, leading to failed regeneration. The aim of this study was to evaluate the antioxidant and protective effects against cell damage of celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, and the antioxidant signal of hPDLSCs in H2O2-induced oxidative stress. Methods : To induce oxidative stress in cultured hPDLSCs, H2O2 was used as an exogenous reactive oxygen species (ROS). Dose-dependent celecoxib (.1, 1, 10, or 100 µM) was administered after H2O2 treatment. WST-1 assay was used to assess cell damage and western blot was used to observe antioxidant activity of hPDLSCs in oxidative stress. Immunohistochemistry was performed for inverting the localization of the SOD and Nrf2 antibody. Results : We found that progressive cell death was induced in hPDLSCs by H2O2 treatment. However, low-dose celecoxib reduced H2O2-induced cellular damage and eventually enhanced the SOD activity and Nrf2 signal of hPDLSCs. Oxidative stress-induced morphological change in hPDLSCs included lowered the survival and number of spindle-shaped cells, and shrinkage and shortening of cell fibers. Notably, celecoxib promoted cell survival function and activated antioxidants such as SOD and Nrf2 by positively regulating the cell survival signal pathway, and also reduced the number of morphological changes in hPDLS. Immunohistochemistry results showed a greater number of SOD- and Nrf2-stained cells in the celecoxib-treated group following oxidative stress. Conclusion : By increasing SOD and Nrf2 expression at the antioxidant system, the findings suggest that celecoxib enhanced the antioxidative ability of hPDLSCs and protected cell viability against H2O2-induced oxidative stress by increasing SOD and Nrf2 expression in the antioxidant system.

Anti-oxidant and Anti-inflammatory Effects of Ethanol Extracts from Aerial Part of Coriandrum sativum L. (고수(Coriandrum sativum L.) 지상부 추출물의 항산화 및 항염증 활성 효과)

  • Nan, Li;Lee, Chang-Hyun;Choi, You-Na;Choo, Byung-Kil
    • Korean Journal of Organic Agriculture
    • /
    • v.27 no.4
    • /
    • pp.513-528
    • /
    • 2019
  • Coriandrum sativum L., an annual herbaceous plant of Apiaceae family. The present study evaluated the anti-oxidant activities and anti-inflammatory effects of ethanol extracts of C. sativum. The anti-oxidant activities of C. sativum were measured by total contents of polyphenol, flavonoid, DPPH and ABTS radical scavenging and reducing power activity. And anti-inflammatory effects of C. sativum were measured by LPS-induced RAW 264.7 cells. The results showed that the contents of total polyphenol and flavonoid were 76.03 ± 1.36 mg of gallic acid equivalents/g and 182.23 ± 4.32 mg of rutin equivalents/g at concentration 1 mg/mL of C. sativum. The DPPH radical scavenging activity was found to be 52.8% at 500 ㎍/mL. The ABTS radical scavenging activity was shown in 58.3% after exposure to 1,000 ㎍/mL. Reducing power activity was found to be 66.8% at 2,000 ㎍/mL. The inhibitory effect of NO production was found to be 65% concentration 500 ㎍/mL. In the generation quantity of inflammatory cytokines such as TNF-α and IL-1β in cell culture medium, the expression levels of inflammatory proteins in cells were showed decrease with the increase of concentration. Therefore, we suggest that the C. sativum should be a potential source of alternative anti-inflammatory drug with good anti-inflammatory effects.