• Title/Summary/Keyword: CORSIM Simulation

Search Result 19, Processing Time 0.032 seconds

Design of Maximum Green Time Parameters for Traffic Actuated Operation (감응식 신호운영을 위한 최대녹색시간의 설계)

  • KIM, Jin Tae
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.4
    • /
    • pp.123-134
    • /
    • 2002
  • 감응식 신호운영변수 설계에 관한 연구는 정주기식 신호운영변수 설계의 그것보다 그 수준이 현저히 미비하며 이는 감응식 신호운영 특성을 반영한 평가방법의 부재로 감응식 운영변수의 평가가 불가능하였기 때문이다. 본 논문은 최근에 소개된 평균 감응현시 녹색시간 추정 수리모형을 이용하여 Highway Capacity Manual (HCM) 지체도를 최소화하는 최대녹색시간의 설계방안을 제시한다. - '최소녹색시간'과 '단위연장시간'은 보행자 횡단시간 및 차량 차두시간 등 지역별 운전자/보행자의 특성과 관련이 있어 일반적인 최적화 설계 수리모형의 적용에 무리가 있어 제외한다. 제안된 설계방안은 감응식 운영논리를 토대로 감응현시 군의 평균녹색시간과 평균주기를 산정하며, HCM 지체도를 평가하고, 가능한 대안 중 지체를 최소화하는 최대녹색시간 운영변수 군을 '혼혈 유전자 알고리즘'으로 도출한다. 현장실험을 통해 도출이 불가능한 실제 최적치를 Corridor Simulation(CORSIM)모형을 이용하여 추정하였고 이를 제안된 설계방안으로 도출된 최대녹색시간 운영변수' 값들과 비교하였다. 비교결과 교차로 v/c 비율이 1.0 보다 낮을 시는 제안된 방법을 통해 설계된 최대녹색시간 운영변수 군이 최소 CORSIM 지체도를 산출하는 최대녹색시간 운영변수 군과 동일한 것으로, v/c비율이 1.0보다 높을 시는 다른 것으로 결과되었다. v/c비율이 1.0 보다 높은 경우는 정주기식 교차로 운영에 효율적이라 감응식 운영의 필요를 벗어나므로 제안된 최대녹색시간 설계방안은 감응식 신호운영 필요범위 내에서 효율적이다. 기존의 최대녹색시간 설계는 정수기식 최적녹색시간을 기준으로 최대녹색시간을 추정하며, 그러한 과정을 돕기 위하여 추정범위(설계자가 범위 내에서 임의로 선택함)를 제시하는 것이 기존의 연구임을 비교하면 본 연구에서 제안하고 있는 설계방법의 의미가 크다.

Analysis of the Macroscopic Traffic Flow Changes using the Two-Fluid Model by the Improvements of the Traffic Signal Control System (Two-Fluid Model을 이용한 교통신호제어시스템 개선에 따른 거시적 교통류 변화 분석)

  • Jeong, Yeong-Je;Kim, Yeong-Chan;Kim, Dae-Ho
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.1
    • /
    • pp.27-34
    • /
    • 2009
  • The operational effect of traffic signal control improvement was evaluated using the Two-Fluid Model. The parameters engaged in the Two-Fluid Model becomes food indicators to measure the quality of traffic flow due to the improvement of traffic signal operation. A series of experiment were conduced for the 31 signalized intersections in Uijeongbu City. To estimate the parameters in the Two-Fluid Model the trajectory informations of individual vehicles were collected using the CORSIM and Run Time Extension. The test results showed 35 percent decrease of average minimum trip time per unit distance. One of the parameters in the Two-Fluid Model is a measure of the resistance of the network to the degraded operation with the increased demand. The test result showed 28 percent decrease of this parameter. In spite of the simulation results of the arterial flow, it was concluded that the Two-Fluid Model is useful tool to evaluate the improvement of the traffic signal control system from the macroscopic aspect.

Assessment of Three-Phase Actuated Signal Operation at Diamond Interchanges (다이아몬드 인터체인지의 3 현시 신호운영 평가)

  • 이상수
    • Proceedings of the KOR-KST Conference
    • /
    • 2002.02a
    • /
    • pp.143-159
    • /
    • 2002
  • The performance of two single-barrier three-phase actuated control systems at diamond interchanges was evaluated for various traffic conditions. To emulate the actuated signal control, hardware-in-the-loop system combined with CORSIM simulation program was used. Two performance measures, average delay and total stops, were used for the evaluation process. Results showed that the two three-phase systems gave similar performance in terms of average delay, but not stops. The delay performance of each phasing system was generally dependent on the traffic pattern and ramp spacing. The total stops decreased as the spacing increased, and it was the most sensitive variable that can differentiate between the two three-phase systems. It was also shown that the hardware-in-the-loop control could provide a good method to overcome the limitations of current simulation technology.

  • PDF

Feasibility Evaluation of Lane Grouping Methods for Signalized Intersection Performance Index Analysis in KHCM (도로용량편람 신호교차로 성능지표 분석을 위한 차로군 분류의 적정성 평가)

  • Kim, Sang-Gu;Yun, Ilsoo;Oh, Young-Tae;Ahn, Hyun-Kyung;Kwon, Ken-An;Hong, Doo-Pyo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.1
    • /
    • pp.109-126
    • /
    • 2014
  • The level of service (LOS) of the Highway Capacity Manual (KHCM) has been used as a basic criterion at decision making processes for signalized intersections in Korea. The KHCM provides five steps for the signalized intersection analysis. Among them, lane grouping, which is the third step, significantly influence the final LOS. The current method presented in the KHCM, however, classifies a shared lane as a de facto turning lane group, even though the turning traffic of the shared lane is few. Thus, this research was initiated to provide an alternative. To this end, three alternatives were suggested, including the method based on the lane grouping presented in the U.S. Highway Capacity Manual, the method using turning ratio of shared turning lane, and the method using a threshold traffic volume in lane grouping. The feasibilities of the three methods were evaluated using a calibrated CORSIM model. Conclusively, the method using a threshold traffic volume in lane grouping outperformed.

Improvement of the HCM Delay Estimation Model for Exclusive Permitted Left Turns (비보호 좌회전 지체도 추정모형의 개선)

  • 김진태
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.2
    • /
    • pp.107-118
    • /
    • 2003
  • Highway Capacity Manual (HCM) provides an analytical delay estimation model to assist the evaluation of traffic at a signalized intersection. The model revised and included in the HCM published in the year 2000 reflects the results of recent studies and is utilized in various fields of transportation studies. For the implementation of the model in the case of permitted left turns, the HCM supplement provides a computational procedure to adjust the saturation flow rate of permitted left toms. The model however, is originally designed for a protected movement and thus underestimates the delay of permitted left turns due to its difference right-of-way nature. This document describes (1) a review of the theoretical background of the HCM delay estimation model, (2) problems embedded in the model for the delay estimation of permitted left turns, (3) a proposed model developed in this study to improve the delay estimation for permitted left turns and (4) a set of verification tests. In order to reflect various traffic and control conditions in the test, simulation studies were performed to by using the field data based on 120 different permitted left-turn scenarios. Comparison studies conducted between sets of delays estimated by the HCM and the proposed models against a set of the CORSIM delays and showed that the proposed model improved the estimation of the permitted left-turn delays. The explanatory variable of the relationship between the HCM delay and the simulation delay was 0.47 and the one between the delay estimated by the proposed model and the simulation delay was 0.77.

A Comparison Study of Different Offset Transition Lengths in Simulation Environment (모의실험 환경에서의 옵셋전이길이 비교연구)

  • Kim, Jin-Tae;Chang, Myung-Soon;Park, Jae-Wan
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.7 s.85
    • /
    • pp.43-52
    • /
    • 2005
  • Signal timing transition has recently been highlighted with Adaptive Traffic Control Systems (ATCS) providing advanced traffic signal operation including real-time grouping of coordinated intersections. Signal timing transition occurs when such signal timings as cycles and offsets are changed at coordinated intersections. Setting a proper length of signal timing transition has become in interest for real-time coordination. This paper presents a study verifying the effects of different lengths of signal timing transition. Four different transition lengths were tested and compared in simulation environment. They include a single, double, treble, quadruple cycle length transitions. The number of cycles represents the ones used (interpolation) for transition. Signal timings were controlled to be adjusted uniformly and discretely during a transition period. Transition times considered in the test are within ranges of ${\pm}20$ percents of cycle lengths. It was found from the study that a single cycle transition performs better than or at least equal to the ones from the other with fifteen different operational conditions, which are developed based on a hypothetical arterial. It was suggested that a single cycle length transition be beneficial when amount of transition is within ${\pm}20$ percents of cycle lengths.

Traffic Signal Control Algorithm for Isolated Intersections Based on Travel Time (독립교차로의 통행시간 기반 신호제어 알고리즘)

  • Jeong, Youngje;Park, Sang Sup;Kim, Youngchan
    • Journal of Korean Society of Transportation
    • /
    • v.30 no.6
    • /
    • pp.71-80
    • /
    • 2012
  • This research suggested a real-time traffic signal control algorithm using individual vehicle travel times on an isolated signal intersection. To collect IDs and passing times from individual vehicles, space-based surveillance systems such as DSRC were adopted. This research developed models to estimate arrival flow rates, delays, and the change rate in delay, by using individual vehicle's travel time data. This real-time signal control algorithm could determine optimal traffic signal timings that minimize intersection delay, based on a linear programming. A micro simulation analysis using CORSIM and RUN TIME EXTENSION verified saturated intersection conditions, and determined the optimal traffic signal timings that minimize intersection delay. In addition, the performance of algorithm varying according to market penetration was examined. In spite of limited results from a specific scenario, this algorithm turned out to be effective as long as the probe rate exceeds 40 percent. Recently, space-based traffic surveillance systems are being installed by various projects, such as Hi-pass, Advanced Transportation Management System (ATMS) and Urban Transportation Information System (UTIS) in Korea. This research has an important significance in that the propose algorithm is a new methodology that accepts the space-based traffic surveillance system in real-time signal operations.

Development of an Average Green Time Estimation Model for Proper Evaluation of Traffic Actuated Operation (감응식 신호운영의 평가를 위한 평균녹색시간 추정모형 개발)

  • KIM, Jin Tae;CHANG, Myungsoon;SON, Bongsoo;DOH, Tcheol Woong
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.3
    • /
    • pp.159-168
    • /
    • 2002
  • The Highway Capacity Manual(HCM) suggests estimating the average green time for the performance evaluation of the traffic actuated operation and Provides the average green time estimation model. However, the model provides with much room for improvements. This document proposes a new analytical model that overcomes the shortage of the HCM model. The average green times estimated by the HCM model and the proposed model were compared. A computer program using the proposed model was coded for the study, while the ACT348 program was used for the implementation of the HCM model Through the comparison study based on the 1,196 hypothetical simulation data surrogating field data, it was found that the average green times estimated by the proposed model yields much nicer one-to-one linear relationship to the simulation results than the ones from the HCM model in both exclusive-only and shared-permitted cases. The R2 values of the proposed and the HCM models with those cases are 0.90 and 0.56, and 0.86 and 0.57, respectively.

Development of Neural Network Based Cycle Length Design Model Minimizing Delay for Traffic Responsive Control (실시간 신호제어를 위한 신경망 적용 지체최소화 주기길이 설계모형 개발)

  • Lee, Jung-Youn;Kim, Jin-Tae;Chang, Myung-Soon
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.3 s.74
    • /
    • pp.145-157
    • /
    • 2004
  • The cycle length design model of the Korean traffic responsive signal control systems is devised to vary a cycle length as a response to changes in traffic demand in real time by utilizing parameters specified by a system operator and such field information as degrees of saturation of through phases. Since no explicit guideline is provided to a system operator, the system tends to include ambiguity in terms of the system optimization. In addition, the cycle lengths produced by the existing model have yet been verified if they are comparable to the ones minimizing delay. This paper presents the studies conducted (1) to find shortcomings embedded in the existing model by comparing the cycle lengths produced by the model against the ones minimizing delay and (2) to propose a new direction to design a cycle length minimizing delay and excluding such operator oriented parameters. It was found from the study that the cycle lengths from the existing model fail to minimize delay and promote intersection operational conditions to be unsatisfied when traffic volume is low, due to the feature of the changed target operational volume-to-capacity ratio embedded in the model. The 64 different neural network based cycle length design models were developed based on simulation data surrogating field data. The CORSIM optimal cycle lengths minimizing delay were found through the COST software developed for the study. COST searches for the CORSIM optimal cycle length minimizing delay with a heuristic searching method, a hybrid genetic algorithm. Among 64 models, the best one producing cycle lengths close enough to the optimal was selected through statistical tests. It was found from the verification test that the best model designs a cycle length as similar pattern to the ones minimizing delay. The cycle lengths from the proposed model are comparable to the ones from TRANSYT-7F.