• Title/Summary/Keyword: COMS Satellite

Search Result 367, Processing Time 0.022 seconds

COMS Shock Test Assessment by Using the Extrapolation Method (외삽법을 이용한 천리안위성 충격시험 분석)

  • Lee, Ho-Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.5
    • /
    • pp.439-445
    • /
    • 2012
  • The COMS(Communication, Ocean, and Meteorological Satellite) is subjected to shock loads when the stage or fairing of a launch vehicle is separated and the satellite is separated from the launch vehicle during the launch vehicle flight. And, after the satellite is separated from the launcher, the COMS is subjected to shock loads when the solar array is deployed, Ka-Band communication antenna is deployed, and meteorological imager radiator cover is released. In order to validate the satellite safety against these shock loads on ground, shock tests were performed. In this paper, the shock tests performed in the course of the COMS development are described, and the method to assess the test result is presented with an example of Geostationary Ocean Color Imager(GOCI). In Ariane-5 launch vehicle, the clampband release shock for satellite separation is lower than the fairing or stage separation. In this paper, the extrapolation method to take into account the maximum shock load from the launch vehicle by using the satellite separation shock test result is also introduced.

Verification and Analysis of COMS MI2U ORB Test (정지궤도위성 기상탑재체 접속장치 ORB 검증시험 및 결과 분석)

  • Kim, Young-Yun;Choi, Jong-Yeon;Kwon, Jae-Wook;Youn, Young-Su;Cho, Seoung-Won
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.66-72
    • /
    • 2007
  • In this study, we would like to report the analysis of COMS(Communication, Ocean & Meterological Satellite) MI2U(Meteo-Imager Interface Unit) ORB (On Board Reconfiguration) verification test. MI2U is one of equipment integrated on COMS and in charge of TM/TC function and Power Supply function of MI(Meteo-Imager). COMS, an geo-stationary satellite, is a multi-functional satellite accommodation two observation payloads and one communication payload.

  • PDF

System Design of COMS(Communication, Ocean and Meteorological Satellite) Propulsion System (통신해양기상위성 추진시스템 시스템설계)

  • Park Eung-Sik;Han Cho-Young;Chae Jong-Won;Bucknell S.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.426-430
    • /
    • 2005
  • The COMS(Communication, Ocean and Meteorological Satellite) is the first developed three-axis stabilization multi-function satellite on geostationary earth orbit(GEO) in korea, presently scheduled to be launched in 2008. The COMS propulsion system provides the thrust and torque required for the insertion into GEO, attitude and orbit control/adjustment of spacecraft. In this paper, system design of propulsion system, basic functions and design requirement of components are described.

  • PDF

Scheduling North-South Mirror Motion between Two Consecutive Meteorological Images of COMS

  • Lee, Soo-Jeon;Jung, Won-Chan;Kim, Jae-Hoon
    • Journal of Satellite, Information and Communications
    • /
    • v.3 no.2
    • /
    • pp.26-31
    • /
    • 2008
  • As a multi-mission GEO satellite, Communication, Ocean, and Meteorological Satellite (COMS) is scheduled to be launched in the year 2009. COMS has three different payloads: Ka-band communication payload, Geostationary Ocean Color Imager (GOCI) and Meteorological Imager (MI). Among the three payloads, MI and GOCI have several conflict relationships; one of them is that if MI mirror moves vertically larger than 4 Line Of Sight (LOS) angle while GOCI is imaging, image quality of GOCI becomes degraded. In this paper, MI scheduling algorithm to prevent GOCI's image quality degradation will be presented.

  • PDF

COMS SYSTEM LEVEL RF COMPATIBILITY TEST SYNTHESIS

  • Lim, Hyun-Su;Park, Durk-Jong;Yang, Hyung-Mo;Ahn, Sang-Il
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.500-503
    • /
    • 2007
  • During the COMS system level test, the RF compatibility will be performed in order to verify that there is no issue in RF interface between satellite and COMS ground station, namely SOC (Satellite Operation Center) before the launch. As used for KOMPSAT1, the RF coaxial cable was chosen to be used to connect satellite and SOC with various advantages as compared with ground antennas. As the preparation step, RF cable and required multiplexer were tested in advance. This paper suggests the way for the RF compatibility tests between the satellite and the SOC over RF cable interface and presents the estimated level diagram as the signal power analysis result.

  • PDF

THE RELATION BETWEEN HPA AND COMS MULTI-CARRIER

  • Park Durk-Jong;Yang Hyung-Mo;Hyun Dae-Wan;Ahn Sang-Il;Kim Eun-Kyu
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.564-566
    • /
    • 2005
  • The relation between HPA (High Power Amplifier) and COMS (Communication Ocean Meteorological Satellite) multi-carrier is analyzed in this paper. MODAC (Meteorological and Ocean Data Application Center) has a primary mission to transmit processed data, HRIT (High Rate Information Transmission) and LRIT (Low Rate Information Transmission), which is normalized and calibrated by pre-processing. It is also replaced with the SOC (Satellite Operation Center) in emergency case and can transmit the command and ranging tones for operation of COMS. From the result of simulation with modelled HPA, it is found that the multi-carrier in one HPA can give rise to an inter-modulation which makes harmonic and spurious elements increase in-band. Under the environment of these increased parasitic elements, the degradation of multi-carrier's quality is estimated from the ratio of the amount of noise to total output power of HPA.

  • PDF

A Study of Public Test-bed Operation for Satellite Communications via COMS (천리안 위성을 활용한 위성 통신용 공공 테스트베드 운용에 관한 연구)

  • Wang, Do-Huy;Oh, Deock-Gil
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.4
    • /
    • pp.12-16
    • /
    • 2013
  • This paper we introduce operated public test-bed satellite system configuration for satellite communications and usage for services via COMS(Communication, Ocean and Meteorological Satellite). According to trial public test-bed operation, the broadband multimedia services are expected to be available at the next generation VSAT services due to the increasing of Ka-band utilization. In addition, UHD broadcasting services via satellite is expected to improve the universal accessibility of broadcast services.

COMS METEOROLOGICAL IMAGER SPACE LOOK SIDE SELECTION ALGORITHM

  • Park, Bong-Kyu;Lee, Sang-Cherl;Yang, Koon-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.100-103
    • /
    • 2008
  • COMS(Communication, Ocean and Meteorological Satellite) has multiple payloads; Meteorological Image(MI), Ocean Color Imager(GOCI) and Ka-band communication payloads. MI has 4 IR and 1 visible channel. In order to improve the quality of IR image, two calibration sources are used; black body image and cold space look data. In case of COMS, the space look is performed at 10.4 degree away from the nadir in east/west direction. During space look, SUN or moon intrusions are strictly forbidden, because it would degrade the quality of collected IR channel calibration data. Therefore we shall pay attention to select space look side depending on SUN and moon location. This paper proposes and discusses a simple and complete space look side selection logic based on SUN and moon intrusion event file. Computer simulation has been performed to analyze the performance of the proposed algorithm in term of east/west angular distance between space look position and hazardous intrusion sources; SUN and moon.

  • PDF

Availability of Land Surface Temperature from the COMS in the Korea Peninsula (한반도에서의 천리안 위성 지표면 온도 유용성 평가)

  • Baek, Jong-Jin;Choi, Min-Ha
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.8
    • /
    • pp.755-765
    • /
    • 2012
  • The Land Surface Temperature (LST) is one of the significant factors to understand the water and energy cycles between the land surface and atmosphere. However, few previous studies for spatio-temporal variations of LST has been investigated. In this study, we conducted comparative analyses between the Communication, Ocean and Meteorological Satellite (COMS) and MOderate-Resolution Imaging Spectroradiometer (MODIS) LST data. We compared COMS data with observations to identify the accuracy and found relative underestimated patterns of the COMS data as compared to observations. We also found that COMS LST were underestimated in compare to MODIS LST. The Terra LST was verified to have more similar trends with the COMS LST rather than Aqua LST. While we identified the applicability of COMS based on the results of similar tendencies of two comparisons, more intensive validation research at a variety of field conditions should be conducted to gurantee current COMS LST.

KA-BAND ANTENNA PERFORMANCE ANALYSIS OF COMS SATELLITE

  • Lee Jeom-Hun;Choi Jang-Sup;Lee Seong Pal
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.316-320
    • /
    • 2004
  • This paper describes Ka-band antenna performance analysis of COMS satellite. The key parameters of the antenna system are optimal antenna diameter, feed horn type and horn size, F/D, and the coordinate of offset horns. The paper deals with the method to determine design core parameters of optimal antenna diameter, feed horn type and horn size, F/D, and the coordinate of offset horns, and the performances of design result.

  • PDF