• 제목/요약/키워드: COMS, Communication Ocean Meteorological Satellite

검색결과 199건 처리시간 0.027초

정지궤도 복합위성의 적외선 지구센서 지지구조물 설계 (IRES Support Structure Design in a GEO Multi-Functional Satellite)

  • 박종석;전형열;김창호
    • 항공우주기술
    • /
    • 제8권2호
    • /
    • pp.68-74
    • /
    • 2009
  • 지구 관측용 광학탑재체를 포함하는 정지궤도 복합위성에는 관측 대상인 지구의 기준위치 정보를 제공하기 위해 적외선 지구센서가 장착된다. 정지궤도상에서 지구센서와 관측 탑재체사이의 지향차는 그 크기가 작더라도 관측 영상의 품질에 심각한 영향을 미칠 가능성이 있다. 따라서 이러한 지향차를 줄이기 위해 궤도상에서 기하학적 안정성을 보장할 수 있는 지지구조물이 적용되었다. 본 논문에서는 통신해양기상위성에서 지구센서 장착을 위해 사용된 지지구조물에 대한 설계 측면의 타당성을 제시한다. 이를 위해 설계 전반의 내용을 기술하고, 설계과정에서 고려된 안정성 측면의 제반 사항과 강성과 강도 등의 요구조건에 대한 부합 여부를 살펴볼 것이다.

  • PDF

Proposal of an Algorithm for an Efficient Forward Link Adaptive Coding and Modulation System for Satellite Communication

  • Ryu, Joon-Gyu;Oh, Deock-Gil;Kim, Hyun-Ho;Hong, Sung-Yong
    • Journal of electromagnetic engineering and science
    • /
    • 제16권2호
    • /
    • pp.80-86
    • /
    • 2016
  • This paper proposes the algorithm for forward link adaptive coding and modulation (ACM) and the detailed design for a satellite communication system to improve network reliability and system throughput. In the ACM scheme, the coding and modulation schemes are changed by as much as the channel can provide depending on the quality of the communication link. To implement the forward link ACM system in the Ka-band, channel prediction and modulation/coding decision methods are proposed and simulated. The parameters of the adaptive filter predictor based on the least mean square are optimized, the minimum mean square error of the channel predictor is 0.0608 when step size and the number of filter tap are 0.0001 and 4, respectively. A test-bed is set up to verify the forward link ACM system, and a test is performed using a Ka-band satellite (i.e., Communication, Ocean, and Meteorological Satellite [COMS]). This test verifies that the ACM scheme can increase the system throughput.

A New Application of Unsupervised Learning to Nighttime Sea Fog Detection

  • Shin, Daegeun;Kim, Jae-Hwan
    • Asia-Pacific Journal of Atmospheric Sciences
    • /
    • 제54권4호
    • /
    • pp.527-544
    • /
    • 2018
  • This paper presents a nighttime sea fog detection algorithm incorporating unsupervised learning technique. The algorithm is based on data sets that combine brightness temperatures from the $3.7{\mu}m$ and $10.8{\mu}m$ channels of the meteorological imager (MI) onboard the Communication, Ocean and Meteorological Satellite (COMS), with sea surface temperature from the Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA). Previous algorithms generally employed threshold values including the brightness temperature difference between the near infrared and infrared. The threshold values were previously determined from climatological analysis or model simulation. Although this method using predetermined thresholds is very simple and effective in detecting low cloud, it has difficulty in distinguishing fog from stratus because they share similar characteristics of particle size and altitude. In order to improve this, the unsupervised learning approach, which allows a more effective interpretation from the insufficient information, has been utilized. The unsupervised learning method employed in this paper is the expectation-maximization (EM) algorithm that is widely used in incomplete data problems. It identifies distinguishing features of the data by organizing and optimizing the data. This allows for the application of optimal threshold values for fog detection by considering the characteristics of a specific domain. The algorithm has been evaluated using the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) vertical profile products, which showed promising results within a local domain with probability of detection (POD) of 0.753 and critical success index (CSI) of 0.477, respectively.

COMS/GOCI 관측값의 대기 에어러솔의 특성에 대한 민감도 분석 (Sensitivity of COMS/GOCI Measured Top-of-atmosphere Reflectances to Atmospheric Aerosol Properties)

  • 이권호;김영준
    • 대한원격탐사학회지
    • /
    • 제24권6호
    • /
    • pp.559-569
    • /
    • 2008
  • 세계 최초의 정지 궤도 해양관측 센서인 Geostationary Ocean Color Imager (COMS/GOCI)가 측정하는 가시광선 영역의 파장대 ($0.4-0.9{\mu}m$)는 대기 구성성분(기체상 또는 입자상)에 의하여 영향을 받기 때문에 이에 대한 보정이 필요하다. 특히, 대기중에 존재하는 미세입자인 에어러솔은 그 물리 화학적 특성의 다양함으로 인하여 태양광과 반응하는 과정이 상당히 복잡하게 나타나므로, 정확한 해양 관측을 위하여 대기 에어러솔과 복사 과정의 상호작용에 대한 정확한 이해가 필요하다. 본 연구에서는 알려진 대기 에어 러솔 특성 자료를 이용하여 에어 러솔의 물리 적, 광학적 특성을 분석하였다. 여기서 얻어진 에어러솔 특성 값들은 복사전달 모델을 이용하여 다양한 환경 조건하(에어러솔의 종류와 양)에서 위성센서가 측정하는 이론적인 복사량과 에어러솔의 관계를 분석하는데 사용되었다. 복사전달모델 분석결과, 위성 자료 분석에서 잘못된 에어러솔의 광학 특성값의 사용으로 인한 오차는 에어러솔 광학 두께($\tau$)가 0.2보다 작은 범위에서는 비교적 작은 값을 나타내나 0.2보다 크게 되는 경우 지속적으로 증가하였다. 추가로 위성 관측값과 복사전달 모델에 의하여 계산된 값의 차이가 최소인 에어러솔 타입의 광학 특성값을 이용하여 ($\tau$)와 ${\aa}ngstr{\ddot{o}}m$ exponent 를 도출한 결과는 기존의 표준 알고리즘보다는 지상관측자료와의 비교적 잘 일치하고 있는 것으로 나타났다. 따라서 위성 관측자료에서 에어러솔 분석함에 있어서 에어러솔 타입에 따른 광학적 특성값의 중요성은 매우 크다고 할 수 있다. 이러한 결과들은 궁극적으로 향후 발사될 COMS/GOCI의 관측 자료를 이용한 대기 에어러솔 분석이나 대기 효과 보정에 있어서 도움이 될 것이다.

아리안-5 발사체를 이용한 통신해양기상위성 발사 (The Launch of the COMS by Ariane-5 Launch Vechicle)

  • 이호형;김방엽;최정수;한조영
    • 한국항공우주학회지
    • /
    • 제36권3호
    • /
    • pp.291-297
    • /
    • 2008
  • 아리안-5 발사체를 이용한 통신해양기상위성 발사에 대하여 소개되었다. 먼저, 통신해양기상위성이 간단히 소개되고, 20%의 추력 향상을 위한 아리안-5G 발사체의 발칸-1 엔진으로부터 아리안-5ECA 발사체의 발칸-2 엔진으로의 개량에 대한 상세한 설명을 포함하여 아리안 5 발사체에 대하여 소개되었다. 그 다음 통신해양기상위성의 발사과정에 대하여 소개되었다. 아리안-5 발사체는 남미 프랑스령 기아나의 쿠루시에 있는 기아나스페이스센터에서 발사된다. 위성처리시설에서 최종점검을 마치면 같은 건물 내의 위험처리시설로 옮겨져 연료를 주입하고, 그곳에서 발사체 어댑터에 결합된 후 최종조립건물로 이동된다. 최종조립건물 내의 발사 테이블 위에서 조립되는 발사체 위에 같이 발사될 위성들이 결합된 후 발사 테이블이 발사체를 싣고 발사대로 이동하여 발사한다. 발사체가 비행하는 동안의 비행 과정에 대해서도 소개되었다.

Optical Orbit Determination of a Geosynchronous Earth Orbit Satellite Effected by Baseline Distances between Various Ground-based Tracking Stations II: COMS Case with Analysis of Actual Observation Data

  • Son, Ju Young;Jo, Jung Hyun;Choi, Jin;Kim, Bang-Yeop;Yoon, Joh-Na;Yim, Hong-Suh;Choi, Young-Jun;Park, Sun-Youp;Bae, Young Ho;Roh, Dong-Goo;Park, Jang-Hyun;Kim, Ji-Hye
    • Journal of Astronomy and Space Sciences
    • /
    • 제32권3호
    • /
    • pp.229-235
    • /
    • 2015
  • We estimated the orbit of the Communication, Ocean and Meteorological Satellite (COMS), a Geostationary Earth Orbit (GEO) satellite, through data from actual optical observations using telescopes at the Sobaeksan Optical Astronomy Observatory (SOAO) of the Korea Astronomy and Space Science Institute (KASI), Optical Wide field Patrol (OWL) at KASI, and the Chungbuk National University Observatory (CNUO) from August 1, 2014, to January 13, 2015. The astrometric data of the satellite were extracted from the World Coordinate System (WCS) in the obtained images, and geometrically distorted errors were corrected. To handle the optically observed data, corrections were made for the observation time, light-travel time delay, shutter speed delay, and aberration. For final product, the sequential filter within the Orbit Determination Tool Kit (ODTK) was used for orbit estimation based on the results of optical observation. In addition, a comparative analysis was conducted between the precise orbit from the ephemeris of the COMS maintained by the satellite operator and the results of orbit estimation using optical observation. The orbits estimated in simulation agree with those estimated with actual optical observation data. The error in the results using optical observation data decreased with increasing number of observatories. Our results are useful for optimizing observation data for orbit estimation.

Station Keeping Maneuver Planning Using COMS Flight Dynamic Software

  • 김해연;이병선;황유라;신동석;김재훈
    • 한국위성정보통신학회논문지
    • /
    • 제2권2호
    • /
    • pp.16-21
    • /
    • 2007
  • 태양과 달 그리고 지구의 비대칭 중력장에 의해 발생하는 다양한 섭동항은 정지궤도 위성의 위치를 지속적으로 변화시킨다. 따라서, 정지궤도 위성의 위치를 일정한 범위 내로 유지시키기 위해서는 궤도경사각과 승교점 적경을 조정하는 남북방향 위치유지와 이심률과 경도를 조정하는 동서방향 위치유지가 필요하다. 본 논문에서는 통신해양기상위성 비행역학 소프트웨어를 이용하여 통신해양기상위성의 위치유지 시뮬레이션을 수행하고 그 결과를 분석하였다. 통신해양기상위성은 경도 $128.2^{\circ}E$ 에서 위성을 ${\pm}0.05^{\circ}$ 범위 내에 유지시키기 위해 일주일 주기로 동서/남북방향 위치유지를 수행하며, 위성의 남쪽 패널에만 부착된 태양 전지판으로 부터 발생하는 자세오차를 줄이기 위해 하루 두 번 휠 오프로딩을 수행한다. 본 논문에서는 휠오프로딩을 고려한 위치유지 시뮬레이션을 수행하였고, 그 결과 통신해양기상위성 비행역학 소프트웨어를 이용하여 통신해양기상위성을 ${\pm}0.05^{\circ}$ 범위 내에서 안정적으로 유지시킬 수 있음을 확인하였다.

  • PDF

ERROR PROPAGATION ANALYSIS FOR IN-ORBIT GOCI RADIOMETRIC CALIBRATION

  • Kang, Gm-Sil;Youn, Heong-Sik
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2008년도 International Symposium on Remote Sensing
    • /
    • pp.92-95
    • /
    • 2008
  • The Geostationary Ocean Color Imager (GOCI) is under development to provide a monitoring of ocean-color around the Korean Peninsula from geostationary platforms. It is planned to be loaded on Communication, Ocean, and Meteorological Satellite (COMS) of Korea. The GOCI has been designed to provide multi-spectral data to detect, monitor, quantify, and predict short term changes of coastal ocean environment for marine science research and application purpose. The target area of GOCI observation covers sea area around the Korean Peninsula. Based on the nonlinear radiometric model, the GOCI calibration method has been derived. The radiometric model of GOCI has been validated through radiometric ground test. From this ground test result, GOCI radiometric model has been changed from second order to third order. In this paper, the radiometric test performed to evaluate the radiometric nonlinearity is described and the GOCI radiometric error propagation is analyzed. The GOCI radiometric calibration is based on onboard calibration devices; solar diffuser, DAMD (Diffuser Aging Monitoring Device). The radiometric model error due to the dark current nonlinearity is considered as a systematic error. Also the offset correction error due to gain/offset instability is considered. The radiometric accuracy depends mainly on the ground characterization accuracies of solar diffuser and DAMD.

  • PDF

DEVELOPMENT OF CHLOROPHYLL ALGORITHM FOR GEOSTATIONARY OCEAN COLOR IMAGER (GOCI)

  • Min, Jee-Eun;Moon, Jeong-Eon;Shanmugam, Palanisamy;Ryu, Joo-Hyung;Ahn, Yu-Hwan
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.162-165
    • /
    • 2007
  • Chlorophyll concentration is an important factor for physical oceanography as well as biological oceanography. For these necessity many oceanographic researchers have been investigated it for a long time. But investigation using vessel is very inefficient, on the other hands, ocean color remote sensing is a powerful means to get fine-scale (spatial and temporal scale) measurements of chlorophyll concentration. Geostationary Ocean Color Imager (GOCI), for ocean color sensor, loaded on COMS (Communication, Ocean and Meteorological Satellite), will be launched on late 2008 in Korea. According to the necessity of algorithm for GOCI, we developed chlorophyll algorithm for GOCI in this study. There are two types of chlorophyll algorithms. One is an empirical algorithm using band ratio, and the other one is a fluorescence-based algorithms. To develop GOCI chlorophyll algorithm empirically we used bands centered at 412 nm, 443 nm and 555 nm for the DOM absorption, chlorophyll maximum absorption and for absorption of suspended solid material respectively. For the fluorescence-based algorithm we analyzed in-situ remote sensing reflectance $(R_{rs})$ data using baseline method. Fluorescence Line Height $({\Delta}Flu)$ calculated from $R_{rs}$ at bands centered on 681 nm and 688 nm, and ${\Delta}Flu_{(area)}$ are used for development of algorithm. As a result ${\Delta}Flu_{(area)}$ method leads the best fitting for squared correlation coefficient $(R^2)$.

  • PDF

해양위성센터 구축 현황 및 GOCI 자료배포시스템 소개 (Establishment Status of the Korea Ocean Satellite Center and GOCI-Data Distribution System)

  • 양찬수;배상수;한희정;조성익;안유환
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2009년도 춘계학술대회 논문집
    • /
    • pp.367-370
    • /
    • 2009
  • 한국해양연구원에서는 2009년 발사 예정인 통신해양기상위성(COMS: Communication, Ocean and Meteorological Satellite)의 해색센서인 정지궤도 해양위성(GOCI: Geostationary Ocean Color Imager) 데이터의 수신, 처리, 배포를 위한 해양위성센터(KOSC: Korea Ocean Satellite Center)를 구축하고 있다. 2005년 "해양위성센터 구축사업"의 시작으로, 전파 수신 환경 등의 조건을 고려하여, 안산에 위치한 한국해양연구원 본원으로 해양위성센터의 위치를 최종 확정하여 구축을 진행하고 있다. 2009년 3월 현재 수신시스템(GDAS: GOCI Data Aquisition System), 자료전처리시스템(IMPS: Image Pre-processing System), 자료처리시스템(GDPS: GOCI Data Processing System), 자료관리 시스템(DMS: Data Management System), 통합감시제어시스템(TMC: Total Management & Controlling System), 기관간 자료교환시스템(EDES: External Data Exchange System) 등이 구축 완료되었고, 위성자료 배포시스템(DDS: Data Distribution System)을 구축하고 있다. 고용량 데이터의 원활한 전송을 위한 데이터센터를 비롯하여 사용자관점에서의 시스템 구축을 추진하고 있으며, 위성 발사 후 사용자 등록을 시작할 계획이다.

  • PDF