• Title/Summary/Keyword: COLLISION

Search Result 4,423, Processing Time 0.029 seconds

Acceleration Technique in Particle-based Collision Detection Using Cone Area Based Dynamic Collision Regions (부채꼴 영역 기반의 동적인 충돌 영역을 이용한 입자 기반 충돌 검사의 고속화 기법)

  • Kim, Jong-Hyun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.2
    • /
    • pp.11-18
    • /
    • 2019
  • In this paper, we propose a framework that can perform acceleration collision detection efficiently by using a cone based collision area in a particle-based system which requires collision detection with many objects. Three conditions determine particle and cone-based collision regions: 1) If there is a cone position within the radius of the adjacent particle, 2) In the case where the position of the adjacent particle exists in the cone area, 3) When adjacent particles exist between two vectors forming a cone area. As a result, it is defined that when the above conditions are all satisfied, the particle and the region of a cone have collided. In this paper, we automatically update the area of the cone, which is the collision detection area, according to the particle movement. Determine the direction and length of the cone based on the position and velocity of the particle to calculate the dynamic change of the cone. Collision detection is performed quickly using only the particles in the finally calculated area. The acceleration method proposed in this paper is simple to implement because it is executed with a closed form equation instead of explicitly creating the tree data structure, and collision inspection performance is improved in all results.

An Improved CSMA/CD with Channel Reservation Facility (채널예약기능을 부가한 개선된 CSMA/CD 프로토콜)

  • 이석주;서경룡
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.3
    • /
    • pp.340-348
    • /
    • 2004
  • In this paper, we proposed an efficient medium access protocol to share single transmission medium for several stations. There are two well known types of medium access protocols: collision allowance and collision avoidance, and each of them is adopted to their own suitable network with advantage. Our proposed protocol have channel reservation facility based on collision allow medium access protocol, CSMA/CD. In a collision, the stations delay collision with generating pseudo collision signal to reserve channel. Then, the collision terminates and the stations, which reserve channel successfully, participate the next competition with higher medium access probability. We show that the proposed protocol reduced collision times and improved utilization of the channel.

  • PDF

Idle Slots Skipped Mechanism based Tag Identification Algorithm with Enhanced Collision Detection

  • Su, Jian;Xu, Ruoyu;Yu, ShiMing;Wang, BaoWei;Wang, Jiuru
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.5
    • /
    • pp.2294-2309
    • /
    • 2020
  • In this article, a new Aloha-based tag identification protocol is presented to improve the reading efficiency of the EPC C1 Gen2-based UHF RFID system. Collision detection (CD) plays a vital role in tag identification process which determines the efficiency of anti-collision protocols since most Aloha-based protocols optimize the incoming frame length based on the collisions in current frame. Existing CD methods are ineffective in identifying collision, resulting in a degradation of identification performance. Our proposed algorithm adopts an enhanced CD (ECD) scheme based on the EPC C1 Gen2 standard to optimize identification performance. The ECD method can realize timely and effective CD by detecting the pulse width of the randomly sent by tags. According to the ECD, the reader detects the slot distribution and predicts tag cardinality in every collision slot. The tags involved in each collision slot are identified by independently assigned sub-frames. A large number of numerical results show that the proposed solution is superior to other existing anti-collision protocols in various performance evaluation metrics.

Multi-AUV Motion Planner with Collision-Map Considering Environmental Disturbances (수중 외란을 고려한 다중 자율 잠수정의 무충돌 주행 계획기의 개발)

  • Jung, Yeun-Soo;Ji, Sang-Joon;Ko, Woo-Hyun;Lee, Beom-Hee
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.323-326
    • /
    • 2006
  • The operation planning of multi-AUV is considered as a very difficult task. This paper proposes the qualitative method about the operation plan of multi-agents. In order to achieve this goal, it applies an extension collision map method as a tool to avoide collision between multi AUVs. This tool has been developed for the purpose of collision forecasting and collision avoidance for the multi - agents system in a land where a control is much easier. This paper analyzes the avoidance value of maximum path of AUV in order to apply this to a water environment where a tidal, a wave and disturbances are common. And it suggests the method that the maximum path avoidance can be applied to the collision avoidance on the extension collision map. Finally, the result proves that multi AUVs effectively navigates to the goal point, avoiding the collision by the suggested method.

  • PDF

FPSO Collision Analysis Using a Simplified Analytical Technique (간이 해석 기법을 이용한 FPSO 충돌 해석)

  • Han, Sang-Min;Ito, Hisashi
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.25-33
    • /
    • 2010
  • Collision between vessels may lead to structural damage and penetration of hulls. The structural damage of a hull may eventually bring about global collapse of the hull girder and outflow of oil, which would contaminate seawater. Therefore, various regulations require the strength of a vessel after collision to satisfy given criteria, and owners usually request collision analyses to confirm the structural safety of their vessels. In the process of designing a vessel to satisfy the collision strength criteria, the strength has been assessed mostly by conducting collision analyses using numerical techniques, such as dynamic, non-linear, finite-element analysis. Design is an inherently iterative process during which many changes are necessary due to the endless needs for reinforcement and modification. Numerical techniques are not adequate for coping with a situation in which collision analysis is frequently required to provide the revised results that reflect the repetitive changes in designs. Numerical techniques require a lot of time and money to conduct in spite of recent improvements in computing power and in the productivity of modeling tools. Therefore, in this paper, an analytical technique is introduced and a collision problem is idealized and simplified using reasonable assumptions based on appropriate background. The technique was applied to an example of an actual FPSO and verified by comparing the results with results from the numerical technique. A good correlation was apparent between the results of the analytical and numerical techniques.

Comparative Study on Collision Strength of LNG Carriers

  • Choe, Ick-Hung;Kim, Jae-Hyun;Ahn, Ho-Jong;Kim, Oi-Hyun
    • Journal of Ship and Ocean Technology
    • /
    • v.5 no.3
    • /
    • pp.36-44
    • /
    • 2001
  • The collision energy absorbing characteristics of side structure of the LNG carriers which have the cargo containment systems of the spherical and the membrane types are compared. A failure mechanism of the double hull side structures of 130, 000 $m^3$ class LNG carriers under sideways collision event has been simulated by using the detailed finite element calculations. In ship collision analysis, the finite element method based on explicit time integration has been use[1 with much success. Finite element modeling techniques for detail description of structural members antral ship motion regarding the dynamic behavior allowed to investigate the effect of bow shape and the initial contact position on side shell of collided ship. In the numerical simulations of the ship-to-ship sideways collision, the effect of the colliding bow shapes and the change of the colliding ship draft are investigated. The critical collision energy which is absorbed by a side structure of a collided ship until the fore-end of colliding ship arrives at the boundary of the cargo tank is calculated. The critical speed of specified colliding ships which can not penetrate the boundary of the LNG cargo tank of the collided ship under collision accident if evaluated.

  • PDF

Relative Risk Evaluation of Front-to-Rear-End Collision when Drivers Using Electronic Devices: A Simulation Study (추출가능 상황에서 전자기기 사용유형에 따른 상대적 위험성평가: 운전 시뮬레이션 연구)

  • Lee, Se-Won;Lee, Jae-Sik
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.4
    • /
    • pp.104-110
    • /
    • 2009
  • In this driving simulation study, the impairing effects of various types of electronic devices usage(i. e., destination search by using in-vehicle navigation system, TV watching and dialing cellular phone) during driving on front-to-rear-end collision avoidance were investigated. Percentage of collisions, driving speeds when the drivers collided, and initial reaction time for collision avoidance were analyzed and compared as the dependent measures. The results indicated that (1) any types of electronic devices usage during driving induced more serious collision-related impairment than control condition where no additional task was required, and (2) in general, destination search task appeared to impair drivers collision avoidance performance more than the other task requirements in terms of percentage of collisions and initial reaction time for collision avoidance, but TV watching induced most serious collision impact. These results suggested that any types of electronic device usage could distract drivers attention from the primary task of driving, and be resulted in serious outcome in potentially risky situation of front-to-rear-end collision. In particular, mandatory use of eye-hand coordination and receiving feedback seemed to one of essential factor leading the drivers visual attentional distraction.

Development of an Object Collision Detection Algorithm for Prevention of Collision Accidents on Living Roads (생활도로에서의 충돌사고 예방을 위한 객체 충돌 감지 알고리즘 개발)

  • Seo, Myoung Kook;Shin, Hee Young;Jeong, Hwang Hun;Chae, Jun Seong
    • Journal of Drive and Control
    • /
    • v.19 no.3
    • /
    • pp.23-31
    • /
    • 2022
  • Traffic safety issues have recently been seriously magnified, due to child deaths in apartment complexes and parking lots. Accordingly, traffic safety technologies are being developed to recognize dangerous situations on living roads and to provide warning services. In this study, a collision detection algorithm was developed to prevent collision accidents between moving objects, by using object type and location information provided from CCTV monitoring devices. To determine the exact collision between moving objects, an object movement model was developed to predict the range of movement by considering the moving characteristics of the object, and a collision detection algorithm was developed to efficiently analyze the presence and location of the collision. The developed object movement model as well as the collision detection algorithm were simulated, in a virtual space of an actual living road to verify performance and derive supplementary matters.

A Study on Collision Avoidance Algorithm Based on Obstacle Zone by Target (Obstacle Zone by Target 기반 선박 충돌회피 알고리즘 개발에 관한 연구)

  • Chan-Wook Lee;Sung-Wook Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.2
    • /
    • pp.106-114
    • /
    • 2024
  • In the 21st century, the rapid development of automation and artificial intelligence technologies is driving innovative changes in various industrial sectors. In the transportation industry, this is evident with the commercialization of autonomous vehicles. Moreover research into autonomous navigation technologies is actively underway in the aviation and maritime sectors. Consequently, for the practical implementation of autonomous ships, an effective collision avoidance algorithm has become a crucial element. Therefore, this study proposes a collision avoidance algorithm based on the Obstacle Zone by Target(OZT), which visually represents areas with a high likelihood of collisions with other ships or obstacles. The A-star algorithm was utilized to represent obstacles on a grid and assess collision risks. Subsequently, a collision avoidance algorithm was developed that performs fuzzy control based on calculated waypoints, allowing the vessel to return to its original course after avoiding the collision. Finally, the validity of the proposed algorithm was verified through collision avoidance simulations in various encounter scenarios.

Validation on the algorithm of estimation of collision risk among ships based on AIS data of actual ships' collision accident (선박충돌사고 AIS 데이터 기반 선박 충돌위험도 추정 알고리즘 검증에 관한 연구)

  • Son, Nam-Sun;Kim, Sun-Young
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2010.10a
    • /
    • pp.180-181
    • /
    • 2010
  • An estimation algorithm of collision risk among multiple ships has been developed in order to reduce human error and prevent collision accidents. The algorithm is designed to calculate the collision risk among ships based on Fuzzy theory by using AIS data as traffic information. In this paper, to validate the algorithm, the AIS data of actual collision accident, which occurred between a product carrier and a cargo carrier in Busan harbor in 2009 are collected. The replay simulation is carried out on the actual AIS data and the collision risk is calculated in real time. In this paper, the features of the estimation algorithm of collision risk and the results of replay simulation based on AIS data of actual collision accident are discussed.

  • PDF