• Title/Summary/Keyword: COLD AIR

Search Result 1,226, Processing Time 0.025 seconds

A Study for Energy Separation of Vortex Tube Using Air Supply System(II) - the effect of surface insulation - (공기공급 시스템에 적응되는 Vortex Tube의 에너지 분리특성에 관한 연구(II) -표면의 단열효과에 따른 영향-)

  • 방창훈;추홍록;유갑종
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.1
    • /
    • pp.3-9
    • /
    • 1999
  • The vortex tube is a simple device which splits a compressed gas stream into a cold stream and a hot stream without any chemical reactions. Recently, vortex tube is widely used to local cooler of industrial equipments and air supply system. In this study, the insulation effect of surface on the efficiency of vortex tube was performed experimentally. The experiment is carried out for nozzle area ratio of 0.194, diameter ratio of cold end orifice of 0.6 and input pressure ranging from 0.2Mpa to 0.5Mpa. The purpose of this study is focused on the effect of surface insulation of vortex tube with the variation of cold air mass flow ratio. The results indicate that the temperature difference of cold and hot air are higher about 12% and 30% than that of not insulated vortex tube respectively. Furthermore, for the insulated vortex tube, the similarity relation for the prediction of cold end temperature as the function of cold air mass flow ratio and input pressure is obtained.

  • PDF

Study on Demand Prediction of Cold Storage Facilities (냉동냉장설비의 수요예측에 관한 연구)

  • Son, Chang-Hyo;Oh, Hoo-Kyu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.9
    • /
    • pp.587-594
    • /
    • 2011
  • This paper describes the investigation on current state of cold storage facilities, and analysis on the demand prediction in the near future. And based on the analysis results, we prospect the scale of cold storage facilities in the near future. The main analysis results are summarized by the followings ; The present circumstances of cold storage facility are determined by investigating actual loading capacity, average stock amounts, and return number of cold storage facility. From the results, the present situation for cold storage facility is about 3% over. It is found that the average stock amounts increase gradually, and accordingly that the demand of cold storage facility is predicted to be increased, resulting that the capacity of cold storage facilities in 2013 expects to reach up to 5,250,000 ton. It is considered that the results of demand prediction has significant implications on the management of cold storage facility in the near future.

3-Dimensional Calculation on Cold Air Flow Characteristics in a Refrigerator (냉장고 내부의 냉기 유동특성에 관한 3차원 해석(I))

  • Oh, Min-Jung;Lee, Jae-Heon;Oh, Myung-Do
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.3
    • /
    • pp.382-395
    • /
    • 1995
  • A numerical study has been performed on flow characteristics in a domestic refrigerator whose size is $540mm{\times}1,530mm{\times}680mm$, considering existence of a fan and evaporator. The flow field has been simulated with the low Reynolds number $k-\bar{\varepsilon}$ turbulent model and SIMPLE algorithm based on the finite volume method. The region of fan which makes driving force for cold air distribution was modeled as a region in which momentum sources are generated uniformly. The concept of the distributed pressure resistance was applied to describe the momentum loss from evaporator. The result showed that the rate of cold air distribution into freezing room and cold storage room was almost 7 : 3.

  • PDF

Enhancement of the round-trip efficiency of liquid air energy storage (LAES) system using cascade cold storage units

  • Kim, Jhongkwon;Byeon, Byeongchang;Kim, Kyoung Joong;Jeong, Sangkwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.4
    • /
    • pp.45-50
    • /
    • 2020
  • In this research, the variation of round-trip efficiency in a liquid air energy storage system (LAES) is calculated and an optimal configuration is found. The multiple stages of cold energy storage are simulated with several materials that process latent heat at different temperature ranges. The effectiveness in the charging and discharging processes of LAES is newly defined, and its relationship with the round-trip efficiency is examined. According to defined correlation, the effectiveness of the discharging process significantly affects the overall system performance. The round-trip efficiency is calculated for the combined cold energy storage materials of aqueous dimethyl sulfoxide (DMSO) solution, ethanol, and pentane theoretically. The performance of LAES varies depending on the freezing point of the cold storage materials. In particular, when the LAES uses several cold storage materials, those materials whose freezing points are close to room temperature and liquid air temperature should be included in the cold storage materials. In this paper, it is assumed that only latent heat is used for cold energy storage, but for more realistic analyzes, the additional consideration of the transient thermal situation to utilize sensible heat is required. In the case of such a dynamic system, since there is certainly more increased heat capacity of the entire storage system, the volume of the cold energy storage system will be greatly reduced.

Development of Low Pollution Grinding Technology using Mist (Mist를 이용한 저공해 연삭 가공기술 개발)

  • 최헌종;이석우;김대중;정해도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.793-797
    • /
    • 2000
  • The environmental problems by using coolant demanded the new cooling methods. As one of them the studies on the dry grinding with compressed cold air have been done. The cooling method using compressed cold air was effdve thmugh going down the temperature of compressed air supplied below $-25^{\circ}C$ and inneasing the amount of mmpresd cold air, but had not enough cooling effect due to the low performance of lubrication. Therefore, the cooling methods using MQL(Minimum Quantity Lubrication) or mist newly were suggested. These two methods can satisfy both cooling effect and lubrication with only small amount of coolant, also has the benefit in the point of decreasing the envimnmental pollution. This paper focused on analyzing the grindmg characteristics of the cooling method using mid. The generated heat and grinding force of the cooling method using mist were compared with them of coolant and compressed cold air. And them grinding test according to the temperature of compressed cold air, mist spray amount and mist supply direction were done.

  • PDF

Analysis of Cooling Effect Using Compressed Cold Air in Turing Process (압축냉각공기를 이용한 선삭가공시 냉각효과 해석)

  • Kwak, Seung-Yong;Kim, Dong-Kil;Lee, Jong-Hang;Lee, Sang-Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.1007-1013
    • /
    • 2003
  • As environmental restriction kas continuously become more strict, machining technology has emphasized on development of environment-friendly technology. In cutting technology, it has been well recognized that cutting fluids might have undesirable effects on workers health and working environment. In this study, compressed cold air was used as a replacement for conventional cutting fluids. The cooling effect on cutting tool was analyzed using the finite element method and the computational fluid dynamics. This study focused on the temperature simulation of cutting tool by real flow analysis of cold air. The maximum flow rate and the minimum temperature of compressed cold air are 300ι/min and -30$^{\circ}C$ respectively. To compare the simulation and experimental results, inner temperature of the cutting tool was measured with the thermocouple embedded in the insert. The results show that the analysis of cutting temperature using FEM and CFD is resonable, and the replacement of cutting fluid with cold air is available.

Temperature Separation Characteristics of a Vortex Tube Based on the Back Pressure of the Cold Air Exit (저온 출구의 배압조건에 따른 볼텍스 튜브의 온도분리 특성 연구)

  • Im, Seokyeon
    • Tribology and Lubricants
    • /
    • v.32 no.5
    • /
    • pp.166-171
    • /
    • 2016
  • Electric vehicle ownership is expanding for two reasons: its technology features have enhanced fuel economy, and the number of vehicle emissions regulations is increasing. Battery performance has a large influence on the capability of electric vehicles, and even though battery thermal management has been actively researched, specific technological improvements to battery performance are not being presented. For instance, many industrial applications utilize vortex tubes as components for refrigeration machines because of their numerous intrinsic benefits. If electric vehicles incorporate vortex tubes for battery cooling, performance and efficiency advancements are possible. This study uses a counter-flow vortex tube to investigate its temperature separation characteristics, based on the back pressure of the cold air exit and the difference between the inlet and back pressures. The experiment uses a vortex tube with the following parameters: six nozzle holes, a 20 mm inner vortex diameter (D), a 14D tube length, a 0.7D cold exit orifice diameter, and a nozzle area ratio of 0.142. The measurements prove that the temperature difference between the hot air and cold air decreased because of the flow resistance of the hot air and the backflow phenomenon at the cold air exit. The flow resistance causes the temperature difference to decrease, and the back pressure of the cold air exit influences the flow resistance. The results show that the back pressure significantly influences the efficiency of temperature separation.

Strategies for utilizing Urban Ventilation Corridor considering Local Cold Air in Watershed Areas - A Case Study of Uijeongbu and Gwacheon - (유역의 찬공기 특성을 고려한 도시 바람길 활용 전략 - 경기도 의정부 및 과천 일대를 사례로 -)

  • EUM, Jeong-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.2
    • /
    • pp.133-151
    • /
    • 2019
  • This study aims to analyze cold air characteristics in the watershed areas and to suggest strategies for utilizing them in urban ventilation corridor plans. For this purpose, the Jungnangcheon watershed and Uijeongbu-si in the northern part of Gyeonggi province, and Anyangcheon watershed as well as Yangjaecheon Tancheon watershed and Gwacheon-si in the southern part were selected as study areas. We used KALM (Kaltluftabflussmodell), a cold air simulation model developed in Germany and identified both the cold air flow and the height of cold air layer generated during 6 hours at night. Uijeongbu City is located on the main stream of the Jungnangcheon watershed, and the local cold air from the southern outskirts is an important part of Uijeongbu-si's overall ventilation corridor planning. In addition, the cold air generated in the vicinity of Mt. Sapae flows into the central business district near the city hall and plays a major role in regulating the thermal environment of the city. But, the cold air flows in the eastern part of Uijeongbu-si was not smoothly. The cold air flow generated in the east of Gwanak Mountain and in the west of Cheonggye Mountain was the most active in the northern part of Gwacheon-si. This flow is also a major ventilation corridor in Anyangcheon watershed as well as Yangjaecheon Tancheon watershed. But, the southern part where the cold air flow is not smooth is planed to be developed as 'Gwacheon Knowledge Information Town Public Housing District', so rapid development is expected in the future. Hence, it is suggested that an additional ventilation corridor plan should be established based on the detailed local wind flow analysis.

A Study on Environment- Friendly Grinding by Using Cold Air (냉각 공기장치에 의한 환경 친화 연삭 연구)

  • 김남경;이동호;성낙창;송지복
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.9
    • /
    • pp.145-151
    • /
    • 1998
  • In this study, the experimental and analytic investigation with cold air system has been performed for improving the working environment of the conventional grinding fluid. Very simple cold air system was developed which could replace by the conventional grinding fluid system. The identification of heat of grinding Bone is very important for precision grinding. The experimental data was analysed to investigate the heat which was transferred to the workpiece. It was found that 45∼55% of the total energy for dry grinding, 22∼28% for wet grinding, and 32∼35% for cold air system are conducted to the workpiece in grinding with cubic boron nitride wheel. Cubic boron nitride wheel could reduce the residual stress and thermal demage comparing with aluminium oxide wheel, because cubic boron nitride wheel has very high extreme thermal conductivity.

  • PDF

Urban Climate Mapping - The Case of Sanggye 4-Dong - (도시기후지도의 작성 -상계 4동을 중심으로-)

  • 송영배
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.29 no.6
    • /
    • pp.27-36
    • /
    • 2002
  • The objective of this study is to improve the quality of the atmospheric environment by incorporating the factors of meteorology and urban climate into the field of urban and environmental planning. To this end, we have conducted a study on CLIMATOP and the mapping of urban climate, which are basic data used to analyze changes in climatic factors and the stagnation and accumulation of air pollutants. In particular, we focused on understanding the formation and movement of cold fresh air and its influx into urban areas by measuring and analyzing climatic factors. As a study result, classification criteria far CLIMATOP and a urban climatic map were made. In addition, we analyzed a digital elevation model, climatic data, and isothermal curves. As a result, we identified the corridor through which cold fresh air moves. We also observed that the temperature of the fluxed cold fresh air increased as land use changed. When the results of this study are applied to urban re-development and re-building projects, which require preliminary environmental assessment and environmental impact assessment, the practice proposed by this study is expected to contribute to the natural purification of air pollution activating the movement of cold fresh air and its influx into urban areas.