• Title/Summary/Keyword: COARE 3.5 bulk algorithm

Search Result 2, Processing Time 0.016 seconds

Calculation and Monthly Characteristics of Satellite-based Heat Flux Over the Ocean Around the Korea Peninsula (한반도 주변 해양에서 위성 기반 열플럭스 산출 및 월별 특성 분석)

  • Kim, Jaemin;Lee, Yun Gon;Park, Jun Dong;Sohn, Eun Ha;Jang, Jae-Dong
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.3
    • /
    • pp.519-533
    • /
    • 2018
  • The sensible heat flux (SHF)and latent heat flux (LHF) over Korean Peninsula ocean during recent 4 years were calculated using Coupled Ocean-Atmosphere Response Experiment (COARE) 3.5 bulk algorithm and satellite-based atmospheric-ocean variables. Among the four input variables (10-m wind speed; U, sea surface temperature; $T_s$, air temperature; $T_a$, and air humidity; $Q_a$) required for heat flux calculation, Ta and $Q_a$, which are not observed directly by satellites, were estimated from empirical relations developed using satellite-based columnar atmospheric water vapor (W) and $T_s$. The estimated satellite-based $T_a$ and $Q_a$ show high correlation coefficients above 0.96 with the buoy observations. The temporal and spatial variability of monthly ocean heat fluxes were analyzed for the Korean Peninsula ocean. The SHF showed low values of $20W/m^2$ over the entire areas from March to August. Particularly, in July, SHF from the atmosphere to the ocean, which is less than $0W/m^2$, has been shown in some areas. The SHF gradually increased from September and reached the maximum value in December. Similarly, The LHF showed low values of $40W/m^2$ from April to July, but it increased rapidly from autumn and was highest in December. The analysis of monthly characteristics of the meteorological variables affecting the heat fluxes revealed that the variation in differences of temperature and humidity between air and sea modulate the SHF and LHF, respectively. In addition, as the sensitivity of SHF and LHF to U increase in winter, it contributed to the highest values of ocean heat fluxes in this season.

Calculation of Surface Heat Flux in the Southeastern Yellow Sea Using Ocean Buoy Data (해양부이 자료를 이용한 황해 남동부 해역 표층 열속 산출)

  • Kim, Sun-Bok;Chang, Kyung-Il
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.19 no.3
    • /
    • pp.169-179
    • /
    • 2014
  • Monthly mean surface heat fluxes in the southeastern Yellow Sea are calculated using directly observed airsea variables from an ocean buoy station including short- and longwave radiations, and COARE 3.0 bulk flux algorithm. The calculated monthly mean heat fluxes are then compared with previous estimates of climatological monthly mean surface heat fluxes near the buoy location. Sea surface receives heat through net shortwave radiation ($Q_i$) and loses heat as net longwave radiation ($Q_b$), sensible heat flux ($Q_h$), and latent heat flux ($Q_e$). $Q_e$ is the largest contribution to the total heat loss of about 51 %, and $Q_b$ and $Q_h$ account for 34% and 15% of the total heat loss, respectively. Net heat flux ($Q_n$) shows maximum in May ($191.4W/m^2$) when $Q_i$ shows its annual maximum, and minimum in December ($-264.9W/m^2$) when the heat loss terms show their annual minimum values. Annual mean $Q_n$ is estimated to be $1.9W/m^2$, which is negligibly small considering instrument errors (maximum of ${\pm}19.7W/m^2$). In the previous estimates, summertime incoming radiations ($Q_i$) are underestimated by about $10{\sim}40W/m^2$, and wintertime heat losses due to $Q_e$ and $Q_h$ are overestimated by about $50W/m^2$ and $30{\sim}70W/m^2$, respectively. Consequently, as compared to $Q_n$ from the present study, the amount of net heat gain during the period of net oceanic heat gain between April and August is underestimated, while the ocean's net heat loss in winter is overestimated in other studies. The difference in $Q_n$ is as large as $70{\sim}130W/m^2$ in December and January. Analysis of long-term reanalysis product (MERRA) indicates that the difference in the monthly mean heat fluxes between the present and previous studies is not due to the temporal variability of fluxes but due to inaccurate data used for the calculation of the heat fluxes. This study suggests that caution should be exercised in using the climatological monthly mean surface heat fluxes documented previously for various research and numerical modeling purposes.