• Title/Summary/Keyword: CO3

Search Result 30,517, Processing Time 0.059 seconds

Protective Effects of Ginsenoside Rg3 against Cholesterol Oxide-Induced Neurotoxicity in the Rat

  • Kim, Jong-Hoon
    • Journal of Ginseng Research
    • /
    • v.33 no.4
    • /
    • pp.294-304
    • /
    • 2009
  • Ginsenosides are among the most well-known traditional herbal medicines frequently used for the treatment of various symptoms in South Korea. The neuroprotective effects of ginsenoside $Rg_3$ (G-$Rg_3$) on cholesterol-oxide-(CO)-induced neurotoxicity were investigated through the analyses of rat brains. The recently accumulated reports show that ginseng saponins (GTS), the major active ingredients of Panax ginseng, have protective effects against neurotoxin insults. In the present study, the neuroprotective effects of G-$Rg_3$ on CO-induced hippocampal excitotoxicity were examined in vivo. The in-vitro studies using rat cultured hippocampal neurons revealed that G-$Rg_3$ treatment significantly inhibited CO-induced hippocampal cell death. G-$Rg_3$ treatment not only significantly reduced CO-induced DNA damage but also attenuated CO-induced apoptosis. The in-vivo studies that were conducted revealed that the intracerebroventricular (i.c.v.) pre-administration of G-$Rg_3$ significantly reduced i.c.v. CO-induced hippocampal damage in rats. To examine the mechanisms underlying the in-vitro and in-vivo neuroprotective effects of G-$Rg_3$ against CO-induced hippocampal excitotoxicity, the effect of G-$Rg_3$ on the CO-induced elevations of the apoptotic cells in cultured hippocampal cells was examined, and it was found that G-$Rg_3$ treatment inhibited CO-induced apoptosis. The histopathological evaluation demonstrated that G-$Rg_3$ significantly diminished the apoptosis in the hippocampus and also spared the hippocampal CA1, CA3, and dentate gyrus neurons. G-$Rg_3$ also significantly improved the CO-caused behavioral impairment. G-$Rg_3$ itself had no effect, however, on the CO-induced inhibition of succinate dehydrogenase activity (data not shown). These results collectively indicate the G-$Rg_3$-induced neuroprotection against CO in rat hippocampus. With regard to the wide use of G-$Rg_3$, this agent is potentially beneficial in treating CO-induced brain injury.

Reactions of Iridium(Ⅰ) Complexes with Acrylonitrile and Polymerization of Acrylonitrile with Iridium(Ⅰ)-Acrylonitrile Complex (이리듐(Ⅰ) 착물과 아크릴로니트릴의 반응 및 이리듐(Ⅰ)-아크릴로니트릴 착물에 의한 아크릴로니트릴의 중합반응)

  • Sang Ha Kim;Chong Sik Chin
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.5
    • /
    • pp.340-344
    • /
    • 1983
  • It has been found that both of the iridium (Ⅰ) complexes, Ir$(ClO_4$)(AN)(CO)$(Ph_3P)_2$(AN = $CH_2$CHCN, $Ph_3P = (C_6H_5)_3$P) and [Ir(AN)(CO)$(Ph_3P)_2]ClO_4$, react with $Cl^-$ to give IrCl(AN)(CO)$(Ph_3P)_2$, and [Ir(AN)(CO)$(Ph_3P)_2]ClO_4$ dissociates AN to yield Ir$(ClO_4)(CO)(Ph_3P)_2$ in the absence of excess AN added, and Ir$(ClO_4)(CO)(Ph_3P)_2$ reacts with $Cl^-$ to produce IrCl(CO)$(Ph_3P)_2$. It is suggested that the catalytic polymerization of AN with Ir$(ClO_4)(AN)(CO)(Ph_3P)_2$ proceeds through the formation of [(CO)(Ph_3P)_2$Ir(-CH=CHCN)(H)($CH_2$=CHCN)]Cl$O_4$ followed by the formation of iridium(alkyl)(alkenyl) type complex which undergoes a reductive elimination to produce the polymer of acrylonitrile.

  • PDF

CO and C3H8 Oxidations over Supported Co3O4, Pt and Co3O4-Pt Catalysts: Effect on Their Preparation Methods and Supports, and Catalyst Deactivation (Co3O4, Pt 및 Co3O4-Pt 담지 촉매상에서 CO/C3H8 산화반응: 담체 및 제조법에 따른 영향과 촉매 비활성화)

  • Kim, Moon-Hyeon;Kim, Dong-Woo;Ham, Sung-Won
    • Journal of Environmental Science International
    • /
    • v.20 no.2
    • /
    • pp.251-260
    • /
    • 2011
  • $TiO_2$- and $SiO_2$-supported $Co_3O_4$, Pt and $Co_3O_4$-Pt catalysts have been studied for CO and $C_3H_8$ oxidations at temperatures less than $250^{\circ}C$ which is a lower limit of light-off temperatures to oxidize them during emission test cycles of gasoline-fueled automotives with TWCs (three-way catalytic converters) consisting mainly of Pt, Pd and Rh. All the catalysts after appropriate activation such as calcination at $350^{\circ}C$ and reduction at $400^{\circ}C$ exhibited significant dependence on both their preparation techniques and supports upon CO oxidation at chosen temperatures. A Pt/$TiO_2$ catalyst prepared by using an ion-exchange method (IE) has much better activity for such CO oxidation because of smaller Pt nanoparticles, compared to a supported Pt obtained via an incipient wetness (IW). Supported $Co_3O_4$-only catalysts are very active for CO oxidation even at $100^{\circ}C$, but the use of $TiO_2$ as a support and the IW technique give the best performances. These effects on supports and preparation methods were indicated for $Co_3O_4$-Pt catalysts. Based on activity profiles of CO oxidation at $100^{\circ}C$ over a physical mixture of supported Pt and $Co_3O_4$ after activation under different conditions, and typical light-off temperatures of CO and unburned hydrocarbons in common TWCs as tested for $C_3H_8$ oxidation at $250^{\circ}C$ with a Pt-exchanged $SiO_2$ catalyst, this study may offer an useful approach to substitute $Co_3O_4$ for a part of platinum group metals, particularly Pt, thereby lowering the usage of the precious metals.

Bimetallic Zeolitic Imidazolate Framework Derived Co3O4/CoFe2O4 Catalyst Loaded In2O3 Nanofibers for Highly Sensitive and Selective Ethanol Sensing (금속-유기 골격체 열분해를 통해 합성된 Co3O4/CoFe2O4 첨가 In2O3나노섬유를 이용한 고감도 고선택성 에탄올 센서)

  • Lee, Soo-Min;Kim, Tae-Hyun;Jo, Young-Moo;Kim, Ki Beom;Lee, Jong-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.94-98
    • /
    • 2021
  • In this study, pure and Co3O4/CoFe2O4-loaded Indium oxide (In2O3) nanofibers were synthesized by the electrospinning of an Indium/Polyvinylpyrrolidone precursor solution containing cobalt and iron bimetallic zeolitic imidazolate frameworks and subsequent heat treatment. The ethanol, toluene, p-xylene, benzene, carbon monodxide, and hydrogen gas sensing characteristics of the solution were measured at 250-400 ℃. 0.5 at%-Co3O4/CoFe2O4-loaded In2O3 nanofibers exhibited extreme response (resistance ratio - 1) to 5 ppm of ethanol (210.5) at 250 ℃ and excellent selectivity over the interfering gases. In contrast, pure In2O3 nanofibers exhibited relatively low responses to all the analyte gases and low selectivity above 250-400 ℃. The superior response and selectivity toward ethanol is explained by the catalytic roles of Co3O4 and CoFe2O4 in gas sensing reaction and the electronic sensitization induced by the formation of p (Co3O4/CoFe2O4)-n (In2O3) junctions.

Low Grade Coal-CO2 Catalytic Gasification Reaction for CO gas Synthesis (CO 합성을 위한 저급석탄-CO2 촉매 가스화 반응)

  • Lee, Ho Yong;Lee, Jong Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.466-473
    • /
    • 2016
  • In this study, the experiments on optimal CO gas synthesis were conducted using low grade coal-$CO_2$ catalyst gasification reaction. The characteristics of generated CO gas were investigated using the chemical activation method of KOH, $K_2CO_3$, $Na_2CO_3$ catalysts with Kideco and Shewha coal. The preparation process has been optimized through the analysis of experimental variables such as ratio between activating chemical agents and coal, the flow rate of gas and reaction temperature during $CO_2$ conversion reaction. The produced CO gas was analysed by Gas Chromatography (GC). The 98.6% $CO_2$ conversion for Kideco coal mixed with 20 wt% $Na_2CO_3$ and 98.9% $CO_2$ conversion for Shenhua coal mixed with 20 wt% KOH were obtained at the conditions of $T=950^{\circ}C$ and $CO_2$ flow rate of 100 cc/min. Also, the low grade coal-$CO_2$ catalytic gasification reaction showed the CO selectivities(97.8 and 98.8 %) at the same feed ratio and reaction conditions.

Preparation and Characterization of Poly[3-hydroxybutyrate-co-4-hydroxybutyrate] Microsphere (Poly[3-hydroxybutyrate-co-4-hydroxybutyrate] 미립구의 제조 및 특성화)

  • Kang, Hye-Su;Kim, Beom-Soo
    • KSBB Journal
    • /
    • v.22 no.3
    • /
    • pp.146-150
    • /
    • 2007
  • Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] microspheres were prepared using solvent evaporation technique. P(3HB-co-4HB) with 3.9 mol% 4HB was synthesized by fed-batch culture of Ralstonia eutropha. The effects of concentration and type of surfactant (Tween 80, sodium dodecylsulfate, and polyvinyl alcohol), addition of dispersion stabilizer (Acacia), concentration of polymer and model drug (bovine serum albumin) on particle size of the microspheres and their in vitro drug release characteristics were investigated. The average particle size of the microspheres decreased with the addition of dispersion stabilizer and increased with the concentration of surfactant, drug and polymer. Amount of drug release increased with decreasing particle size of the microspheres.

Temperature-Dependent Redox Isomerism via Intramolecular Electron Transfer. Synthesis and Properties of Co(dmppz)₂(3,6-dbq)₂ (dmppz=1,4-dimethylpiperazine; 3,6-dbq=3,6-di-tert-butyl-1,2-quinone)

  • 정옥상;조두환;박성호;손윤수
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.6
    • /
    • pp.628-631
    • /
    • 1997
  • The preparation and characterization of $Co(dmppz)_2(3,6-dbq)_2$ (dmppz=1,4-dimethylpiperazine; 3,6-dbq=3,6-di-tert-butyl-1,2-quinone) are established. Temperature-dependent magnetic moments (100-400 K), variable-temperature IR, and electronic spectra are presented to show that the title complex exhibits an equilibrium via a catechol to cobalt intramolecular electron transfer. At temperatures below 350 K, the charge distribution of the complex is $Co^Ⅲ(dmppz)_2(3,6-dbsq)(3,6-dbcat)$ (3,6-dbsq=3,6-di-tert-butyl-1,2-semiquinonato; 3,6-dbcat=3,6-di-tert-butylcatecholato) whereas at the temperature beyond 390 K, the complex is predominantly Co^Ⅱ(dmppz)_2(3,6-dbsq)_2$ form in the solid state. At the temperature range of 350-390 K a mixture of Co(Ⅲ) and Co(Ⅱ) redox isomers exist at equilibrium. The transition temperature (Tc) of Co(Ⅲ)/Co(Ⅱ) in solution is approximately 50° lower than that in the solid state. In particular, thermal analysis on solid sample of the complex discloses that the transition for the Co(Ⅲ)/Co(Ⅱ) is accompanied by the change in heat content of 12.30 kcal/mol.

Electrochemical Property of CNT/Co3O4 Nanocomposite for Anode of Lithium Batteries (리튬 이차전지 음극용 CNT/Co3O4 나노복합체의 전기화학적 특성)

  • Yoon, Dae Ho;Park, Yong Joon
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.3
    • /
    • pp.187-192
    • /
    • 2014
  • In this article, we report the fabrication and characterization of $CNT/Co_3O_4$ nanocomposite for lithium ion batteries. We expected that the composition with CNT is effective method to compensate for the low electronic conductivity of $Co_3O_4$ and suppress the stress from phase transition of $Co_3O_4$ during cycling. $CNT/Co_3O_4$ nanocomposites were composed of nano-sized $Co_3O_4$ particles, which were homogeneously distributed on the surface of CNTs. The $CNT/Co_3O_4$ electrode presented higher capacity than commercial graphite, good rate capability and stable cyclic performance. This implies that the $CNT/Co_3O_4$ could be a promising anode material for lithium ion batteries.

Preparation and Characterization of Dinuclear Metal Complexes, $[(PPh_3)_2(CO)M({\mu}-E)M(CO)(PPh_3)_2](SO_3CF_3)_2$ (M = Rh, Ir; E = 1,4-Dicyanobenzene and 1,4-Dicyano-2-butene)

  • Moonsik Kim;JaeKyun Chin;Jaejung Ko
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.5
    • /
    • pp.556-559
    • /
    • 1992
  • Hydrocarbon solution of $(PPh_3)_2(CO)MOSO_2CF_3$ (M= Rh, Ir) reacts rapidly with 1,4-dicyanobenzene or 1,4-dicyano-2-butene to yield dinuclear metal complexes $[(PPh_3)_2(CO)M({\mu}-dicyanobenzene)M(CO)(PPh_3)_2](SO_3CF_3)_2$ (I: M = Rh; II: M = Ir) or $[(PPh_3)_2(CO)M({\mu}-dicyano-2-benzene)M(CO)(PPh_3)_2](SO_3CF_3)_2$ (III: M = Rh; IV: M = Ir), respectively. Compounds I, II, III, and IV were characterized by $^1H$-NMR, $^{31}P$-NMR, and infrared spectrum. Dichloromethane solution of II and IV reacts with $H_2\;and\;I_2$ to yield oxidative addition complexes $[(PPh_3)_2(CO)IrX_2({\mu}-E)X_2Ir(CO)(PPh_3)_2](SO_3CF_3)_2$ (V; E = 1,4-dicyanobenzene, $X_2$ = $H_2$; VI : E = 1,4-dicyano-2-butene, $X_2$ = $H_2$; VII; E = 1,4-dicyanobenzene, $X_2$ = $I_2$). All metal complexes are bridged by the cyanide groups. Compounds Ⅴ, Ⅵ, and Ⅶ are characterized by conventional methods.