• Title/Summary/Keyword: CO2 hydrogenation

Search Result 65, Processing Time 0.035 seconds

Kinetic Parameter Analysis of Hydrogen Diffusion Reaction for Hydrogen Storage Alloy of Fuel Cell System (연료전지의 수소저장용 합금에 대한 수소확산반응의 속도론적 해석)

  • Kim, Ho-Sung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.2
    • /
    • pp.45-49
    • /
    • 2006
  • Electrochemical hydrogenation/dehydrogenation properties were studied for a single particle of a Mm-based(Mm : minh metal) hydrogen storage alloy($MmNi_{3.55}Co_{0.75}Mn_{0.4}Al_{0.3}$) for fuel cell and Ni-MH batteries. A carbon fiber microelectrode was manipulated to make electrical contact with an alloy particle, and the potential-step experiment was carried out to determine the apparent chemical diffusion coefficient of hydrogen atom($D_{app}$) in the alloy. Since the alloy particle we used here was a dense, conductive sphere, the spherical diffusion model was employed for data analysis. $D_{app}$ was found to vary the order between $10^{-9}\;and\;10^{-10}[cm^2/s]$ over the course of hydrogenation and dehydrogenation process. Compared with the conventional composite film electrodes, the single particle measurements using the microelectrode gave more detailed, true information about the hydrogen storage alloy.

Combined FTIR and Temperature Programmed Fischer-Tropsch Synthesis over Ru/SiO2 and Ru-Ag/SiO2 Supported Catalysts

  • Hussain, Syed T.;Nadeem, M. Arif;Mazhar, M.;Larachi, Faical
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.529-532
    • /
    • 2007
  • Combined temperature programmed reaction (TPR) and infrared (IR) spectroscopic studies for Fischer- Tropsch reaction have been performed over Ru/SiO2 and Ru-Ag/SiO2 supported catalysts. Reaction of linearly absorbed CO with hydrogen starts at 375 K over Ru/SiO2 catalyst and reaches maximum at 420 K accompanied with an intensity decrease of linear CO absorption. The reaction with bridged absorbed CO peaks around 510-535 K. Addition of Ag yields mixed Ru-Ag bimetallic sites while it suppresses the formation of bridged bonded CO. Formation of methane on this modified surface occurs at 390 K and reaches maximum at 444 K. Suppression of hydrogen on the Ag-doped surface also occurs resulting in the formation of unsaturated hydrocarbons and of CHx intermediates not observed with Ru/SiO2 catalyst. Such intermediates are believed to be the building blocks of higher hydrocarbons during the Fischer-Tropsch synthesis. Linearly absorbed CO is found to be more reactive as compared to bridged CO. The Ag-modified surface also produces CO2 and carbon. On this surface, hydrogenation of CO begins at 390 K and reaches maximum at 494 K. The high temperature for hydrogenation of absorbed CO and C over Ru-Ag/SiO2 catalyst as compared to Ru/SiO2 catalyst is due to the formation of Ru-Ag bimetallic surfaces impeding hydrogen adsorption.

A Study on the Hydrogenation of CO2 Using Cu/ZnO/Cr2O3/Al2O3 Catalysts (Cu/ZnO/Cr2O3/Al2O3 촉매를 이용한 이산화탄소의 수소화 연구)

  • Sim, Kyu-Sung;Han, Sang-Do;Kim, Jong-Won;Kim, Youn-Soon;Myoung, Kwang-Sik;Park, Ki Bae
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.7 no.2
    • /
    • pp.147-155
    • /
    • 1996
  • The aim of this study is the development of technologies of methanol production from carbon dioxide by catalytic hydrogenation. Experiments about carbon dioxide hydrogenation by catalyst mixed with CuO, ZnO, $Cr_2O_3$ and $Al_2O_3$ were conducted to find optimum catalyst and reaction condition. Reactions were carried out at atmospheric and high pressures between 200 to $350^{\circ}C$. High yield of methanol was obtained with $Cu/ZnO/Cr_2O/Cr_2O_3/Al_2O_3$ catalyst at $250^{\circ}C$ and above 30 atmospheric pressure. There was not any increament of hydrogenation reactivity for the catalysts which was made by the addition of Pd to $Cu/ZnO/Cr_2O/Cr_2O_3/Al_2O_3$.

  • PDF

Concurrent Production of Methanol and Dimethyl Ether from Carbon Dioxide Hydrogenation : Investgation of Reaction Conditions

  • 전기원;신원제;이규완
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.9
    • /
    • pp.993-998
    • /
    • 1999
  • The concurrent production of methanol and dimethyl ether from carbon dioxide hydrogenation has been studied under various reaction conditions. First, the methanol synthesis was compared with the concurrent production method. For the methanol synthesis, the ternary mixed oxide catalyst (CuO/ZnO/Al2O3) was used and for the coproduction of methanol and dimethyl ether, silica-alumina was mixed with the methanol synthesis catalyst to be a hybrid catalyst. The results show that the co-production provides much higher per-pass yield than methanol synthesis even at very short contact time. The effects of temperature, contact time, pressure and catalyst hybrid ratio on the product yields and selectivities were also determined in the co-production.

Catalytic Reactions of 3-Phenyl-2-propen-1-ol with Perchloratocarbonylbis (triphenylphosphine) rhodium (I)$^\dag$

  • Park, Jeong-Han;Chin, Chong-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.4
    • /
    • pp.324-328
    • /
    • 1987
  • Reaction of Rh $(ClO_4)(CO)(PPh_3)_2$ (1) with trans-$C_6H_5CH = CHCH_2OH$ (2) produces a new cationic rhodium(Ⅰ) complex, $[Rh(trans-C_6H_5CH = CHCHO)(CO)(PPh_3)_2]ClO_4$ (3) where 2 is coordinated through the oxygen atom but not through the olefinic group. At room temperature under nitrogen, complex 1 catalyzes dehydrogenation, hydrogenolysis, and isomerization of 2 to give $trans-C_6H_5CH$ = CHCHO (4), trans-$C_6H_5CH = CHCH_3$ (5) and $C_6H_5CH_2CH_2CHO$ (6), respectively, and oligomerization of 2 whereas under hydrogen, complex 1 catalyzes hydrogenation of 2 to give $C_6H_5CH_2CH_2CH_2OH$ (7) and hydrogenolysis of 2 to 5 which is further hydrogenated to $C_6H_5CH_2CH_2CH_3$ (8). The dehydrogenation and hydrogenolysis of 2 with 1 suggest an interaction between the rhodium and the oxygen atom of 2, whereas the isomerization and hydrogenation of 2 with 1 indicate an interaction between the rhodium and the olefinic system of 2.

Hydrogenation of Methyl Dodecanoate Using Copper Chromite (분산액에서의 Copper Chromite 합성 및 Methyl Dodecanoate의 수소화반응)

  • Kang, Ho-Cheol;Lee, Sang-Hoon;Park, Jong-Mok;Kim, Dong-Pyo;Lee, Byung Min
    • Applied Chemistry for Engineering
    • /
    • v.20 no.2
    • /
    • pp.201-207
    • /
    • 2009
  • The hydrogenation reaction of methyl dodecanoate for the synthesis of 1-dodecanol has been carried out in the presence of a copper chromite catalyst. The catalysts were synthesized by ceramic method, co-precipitation, and improved co-precipitation method and the particles were characterized by SEM and XRD. Also, the products of the reaction were assigned by GC, GC/MSD and NMR. The particles synthesized by each method showed (1) a spherical shape with the size of 3.2 to $7.0{\mu}m$, (2) an agglomerated spherical shape with the size of 50 to 500 nm and (3) a spherical shape with smaller particle size, respectively. Especially, in order to control the size of particles, the particles were synthesized in various dispersant solutions as Span 80, polyacrylate, and polyethyleneglycols (PEGs). The particles synthesized in PEG (Mw = 4000) solution showed the smallest particle size of 30 to 50 nm and the regularity of the particle size distribution. Our experimental results elucidated that the activity of catalyst for hydrogenation increases with decreasing the size of catalyst particle. The highest yield of dodecanol in the hydrogenation reaction was 95.5% when copper chromite synthesized in the PEG solution was used as a catalyst in the optimized reaction condition.

Syntheses and Reactions of Iridium Complexes Containing Mixed Phosphine-Olefin Ligand: (3-(Diphenylphosphino)propyl)(3-butenyl)phenylphosphine

  • Young-ae W. Park;Devon W. Meek
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.6
    • /
    • pp.524-528
    • /
    • 1995
  • The reaction of [IrCl(cod)]2 with ppol ligand, Ph2PCH2CH2CH2P(Ph)CH2CH2CH=CH2, in ethanol gives an iridium complex, whose structure is converted from an ionic form, [Ir(cod)(ppol)]Cl·2C2H5OH (1),in polar solvents (ethanol, methanol and acetonitrile), to a molecular form, [IrCl(cod)(ppol)], in non-polar solvents (benzene and toluene). The cationic complexes, [Ir(cod)(ppol)]AsF6·1/2C2H5OH and [Ir(cod)(ppol)]PF6·1/2CH3CN, were prepared to compare with the ionic form by 31P NMR spectroscopy. When carbon monoxide is introduced to 1, cod is replaced by CO to give the 5-coordinated complex, [IrCl(CO)(ppol)]. Hydrogenation of 1-octene was not successful in the presence of 1. In order to verify the reason for 1 not behaving as a good catalyst for hydrogenation, electrophilic reactions with HCl, I2 and HBF4·etherate were performed, which yielded the oxidative addition product, [IrHCl2(ppol)], the substitution product, [IrI(cod)(ppol)], and another cationic product, [Ir(cod)(ppol)]BF4, respectively. Thus, the iridium complex is not sufficiently basic to activate hydrogen atoms or the olefin of the ppol ligand.

The $CO_{2}$ Hydrogenation toward the Mixture of Methanol and Dimethyl Ether: Investigation of Hybrid Catalysts

  • 준기원;K.S. Rama Rao;정미희;이규완
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.4
    • /
    • pp.466-470
    • /
    • 1998
  • Catalytic hydrogenation of carbon dioxide for the simultaneous synthesis of methanol and dimethyl ether (together called oxygenates) over a combination of methanol synthesis and methanol dehydration catalysts has been studied. Various methanol synthesis and methanol dehydration catalysts were examined for this reaction. The addition of promotors like $Ga_2O_3\; and\; Cr_2O_3$ to Cu/ZnO catalyst gave much more enhanced yield on the formation of oxygenates. From the results, the promotional effect of $Cr_2O_3$ has been explained in terms of increase in the intrinsic activity of Cu while that of $Ga_2O_3$ being increase in the dispersion of Cu. Among the methanol dehydration catalysts examined, the solid acids bearing high population of intermediate-strength acid sites were found to be very effective for the production of oxygenates. HY zeolite which contains strong acid sites produce small amount of hydrocarbons as by-products. However, CuNaY zeolite in which the presence of strong acid sites are minimum gives very high oxygenates yield without the formation of hydrocarbons.

Copper/Nickel/Manganese Doped Cerium Oxides Based Catalysts for Hydrogenation of CO2

  • Toemen, Susilawati;Bakar, Wan Azelee Wan Abu;Ali, Rusmidah
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2349-2356
    • /
    • 2014
  • The recycling technology by the catalytic conversion is one of the most promising techniques for the $CO_2$ treatment of coal burning power plant flue gases. The conversion of $CO_2$ to valuable product of $CH_4$ can be used as a fuel to run the turbine for electricity generation. Through this technique, the amount of coal needed for the combustion in a gas turbine can be reduced as well as $CO_2$ emissions. Therefore, a series of catalysts based on cerium oxide doped with copper, nickel and manganese were prepared by impregnation method. From the characterization analysis, it showed that the prepared catalysts calcined at $400^{\circ}C$ were amorphous in structure with small particle size in the range below 100 nm. Meanwhile, the catalyst particles were aggregated and agglomerated with higher surface area of $286.70m^2g^{-1}$. By increasing the calcination temperature of catalysts to $1000^{\circ}C$, the particle sizes were getting bigger (> 100 nm) and having moderate crystallinity with lower surface area ($67.90m^2g^{-1}$). From the catalytic testing among all the prepared catalysts, Mn/Ce-75/$Al_2O_3$ calcined at $400^{\circ}C$ was assigned as the most potential catalyst which gave 49.05% and 56.79% $CO_2$ conversion at reaction temperature of $100^{\circ}C$ and $200^{\circ}C$, respectively.

Synthesis of C9-Alcohol through C9-Aldehyde Hydrogenation over Copper Catalysts (구리 촉매 상에서 C9-알데히드의 수소화 반응에 의한 C9-알코올 합성)

  • Park, Young-Kwon;Noh, Sang Gyun;Cho, Kyu Sang;Jeon, Jong-Ki
    • Korean Chemical Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.363-368
    • /
    • 2006
  • This study selected the optimal catalyst for the process of producing $C_9$-alcohol by hydrogenating $C_9$-aldehyde, and carried out an experiment in order to establish the operating condition for maximizing the yield of $C_9$-alcohol. The BET surface area and the specific area of copper were most excellent in $CuO/ZnO/Al_2O_3$ (60:30:10 wt%) catalyst produced using acetate as a precursor of copper and $Na_2CO_3$ as a precipitant, and the catalyst also showed the highest performance in $C_9$-aldehyde hydrogenation. Using a trickle bed reactor loaded with optimized catalyst, we attained 94.1 wt% yield of $C_9$-alcohol under the condition of $175^{\circ}C$, 800 psi and $WHSV=3hr^{-1}$. According to the result of comparing with other catalysts used in the hydrogenation of aldehyde, the catalyst showed similar performance to that of Ni/kieselghur and higher than that of $Cu-Ni-Cr-Na/Al_2O_3$ and $Ni-Mo/Al_2O_3$. According to the result of examining the stability of the catalyst through a long-term catalysis test, the yield of $C_9$-alcohol decreased slowly after around 72 hours due to the increasing production of high boiling-point byproducts.