• Title/Summary/Keyword: CO2 Rate

Search Result 5,777, Processing Time 0.033 seconds

A study on the Effect of Alkali-admixture on Compressive Strength and Carbonation properties of Geopolymer paste (알칼리 자극제가 지오폴리머 페이스트의 압축강도와 탄산화 특성에 미치는 영향에 관한 연구)

  • Yoon, Chang-Bok;Park, Jang-Hyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.187-188
    • /
    • 2022
  • In this study, the compressive strength and carbonation properties of geopolymer paste according to the amount of alkali admixture added were evaluated for the development of geopolymer concrete that recycles industrial waste. A geopolymer paste specimen was prepared using Ca(OH)2 as an admixture, and the prepared specimen was standard cured for 28 days. After curing, the compressive strength of the specimen was measured. As the amount of alkali admixture increased, the compressive strength increased. After curing, carbonation was carried out for 7 days in a CO2 5% environment. As a result of comparative evaluation of the amount of CaCO3 produced according to carbonation, the amount of CaCO3 produced increased as the amount of Ca(OH)2 added increased. However, when the amount of admixture added exceeds 5%, the increase rate decreases, so the optimum addition rate is considered to be 5%.

  • PDF

Numerical Study on H2 Preferential Diffusion Effect in Downstream Interactions between Premixed H2-air and CO-air Flames (상호작용 하는 H2-공기/CO-공기 예혼합화염에 미치는 H2 선호 확산 영향에 대한 수치적 연구)

  • Chung, Yong Ho;Park, Jeong;Kwon, Oh Boong;Keel, Sang In;Yun, Jin Han
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.4
    • /
    • pp.37-43
    • /
    • 2013
  • The effects of preferential diffusion of hydrogen in interacting counterflow $H_2$-air and CO-air premixed flames were investigated numerically. The global strain rate was varied in the range $30-5917s^{-1}$, where the upper bound of this range corresponds to the flame-stretch limit. Preferential diffusion of hydrogen was studied by comparing flame structures for a mixed average diffusivity with those where the diffusivities of H, $H_2$ and $N_2$ were assumed to be equal. Flame stability diagrams are presented, which show the mapping of the limits of the concentrations of $H_2$ and CO as a function of the strain rate. The main oxidation route for CO is $CO+O_2{\rightarrow}CO_2+O$, which is characterized by relatively slow chemical kinetics; however, a much faster route, namely $CO+OH{\rightarrow}CO_2+H$, can be significant, provided that hydrogen from the $H_2$-air flame is penetrated and then participates in the CO-oxidation. This modifies the flame characteristics in the downstream interaction between the $H_2$-air and CO-air flames, and can cause the interaction characteristics at the rich and lean extinction boundaries not to depend on the Lewis number of the deficient reactant, but rather to depend on chemical interaction between the two flames. Such anomalous behaviors include a partial opening of the upper lean extinction boundary in the interaction between a lean $H_2$-air flame and a lean CO-air flame, as well as the formation of two islands of flame sustainability in a partially premixed configuration with a rich $H_2$-air flame and a lean CO-air flame. At large strain rates, there are two islands where the flame can survive, depending on the nature of the interaction between the two flames. Furthermore, the preferential diffusion of hydrogen extends both the lean and the rich extinction boundaries.

Mathematical Models of Photosynthetic Rate of Hydroponically Grown Cucumber Plants as Affected by Light Intensity, Air Temperature, Carbon Dioxide and Leaf Nitrogen Content (광도, 온도, $\textrm{CO}_2$ 농도 및 엽중 질소농도의 변화에 따른 양액재배 오이의 광합성속도에 관한 수리적 모형)

  • 임준택;백선영;정현희;현규환;권병선
    • Journal of Bio-Environment Control
    • /
    • v.9 no.3
    • /
    • pp.171-178
    • /
    • 2000
  • Gross photosynthetic rats of leaves of hydroponically grown cucumber plants(Cucumis sativus L. cv. Guwoosalichungjang) were measured under various conditions of photosynthetic photon flux(PPF), ambient $CO_2$ concentration, air temperature and leaf nitrogen contents. Light compensation point of leaf photosynthesis appeared to be in the range of 10~20$\mu$mol.m$^{-2}$ .s$^{-1}$ and light saturation point be above 1000$\mu$mol.m$^{-2}$ .s$^{-1}$ . Gross photosynthetic rates increased persistently and asymptotically as air temperature rose from 12$^{\circ}C$ to 32$^{\circ}C$. However, there were only small differences in gross photosynthetic rates in the range of 24-32$^{\circ}C$, so that the range seemed to be optimal for photosynthesis of cucumber plants at the condition of $CO_2$ concentration of 400$\mu$mol.mol$^{-1}$ and PPF of around 400$\mu$mol.m$^{-2}$ .s$^{-1}$ . $CO_2$ compensation point of leaf photosynthesis appeared to be in the range of 20-40$\mu$mol.mol$^{-1}$ and $CO_2$ saturation point be above 1200$\mu$mol.mol$^{-1}$ . Gross photosynthetic rates increased sigmoidally as leaf nitrogen content increased. These environmental factors interacted synergistically to enhance gross photosynthetic rate, so that the rate increased multiplicatively s level of one factor increased progressively with higher levels of he other factors. Mathematical models wer developed to estimate the gross photosynthetic rate in accordance with the variations of these environmental factors. These modes can be used not only to explain he variation of growth or yield of cucumber plants under different environmental conditions but also as building blocks of plant growth model or expert system of cucumber plants.

  • PDF

Decomposition Reaction of Methanol over Ni-Cu/SiO$_2$Catalyst (Ni-Cu/SiO$_2$촉매 상에서의 메탄올 분해 반응)

  • 박지영;문승현;윤형기;박성룡;이상남;정승용
    • Journal of Energy Engineering
    • /
    • v.5 no.1
    • /
    • pp.65-71
    • /
    • 1996
  • Decomposition reaction of methanol was conducted on Ni-Cu/SiO$_2$catalysts with several variables. Variables used in this study are S.V(Space Velocity), partial pressure of methanol, reaction temperature, and composition rate of Ni-Cu. The range of S.V is 10,000-30,000h$\^$-1/, the temperature range is 150-400$^{\circ}C$ and values of Cu/(Ni+Cu) are 0, 0.25, 0.5, 0.75, and 1. Over Ni/SiO$_2$, and Ni-Cu/SiO$_2$, the conversion rate of decomposition reaction of methanol arrived at 100% with increasing of temperature. At this time the selectivity of CO on Ni/SiO$_2$, was suddenly decreased, but on Ni-Cu/SiO$_2$, it was still sustained highly. The main products of reaction were CO and H$_2$, and by-products were CO$_2$ and CH$_4$mainly.

  • PDF

Effect of Perilla Oil in Diet on the Biochemical Property of Cultured Sweet Smelt Plecoglossus altivelis

  • Jeong Bo-Young;Jeong Woo-Geon;Moon Soo-Kyung;Maita Masashi;Ohshima Toshiaki
    • Fisheries and Aquatic Sciences
    • /
    • v.4 no.4
    • /
    • pp.163-170
    • /
    • 2001
  • The effect of perilla oil added in diet on the biochemical properties of cultured sweet smelt, Plecoglossus altivelis, was investigated. The cultured fish were fed two different diets for 8 weeks; a control diet was a commercial diet, which was low in the content of docosa­hexaenoic acid (DHA, 22: 6n-3) and eicosapentaenoic acid (EPA, 20: 5n-3) less than approximately $2\%$ (CO group) and an experimental diet (PO group) was added perilla oil as a lipid source in the diet of the CO group. The PO group was superior in growth rate and feed efficiency compared with CO group. This trend showed markedly in female of both groups. The fatty acid composition in the muscle of PO group was closely related with those of the diet, while those of CO group were not. For plasma components, total cholesterol (CHOU of PO group was higher than that of CO group. Thiobarbituric acid-reactive substances (TBARS), hydroxyl (OH) radical levels and superoxide dismutase (SOD) activity of plasma were higher in PO group than CO group. The intensity of watermelon-like or cucumber-like aroma was much stronger in PO group with higher level of TBARS and OH radical in plasma compared CO group. Survival rate was also high in PO group with high levels of phagocytic rate, CHOL and SOD activity. These results suggest that perilla oil might be usefulness as a lipid source of the cultured sweet smelt diet, in which result in high quality of the cultured fish.

  • PDF

Thermal Characteristics of Living Leaves in Pinus Densiflora with Heat Flux (복사열 증가에 따른 소나무 생엽의 열적특성 분석)

  • Park, Young-Ju;Lee, Hae-Pyeong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.5
    • /
    • pp.75-82
    • /
    • 2010
  • To study the combustion characteristics of forest fuel by fire intensity, the experiment of combustion characteristics on Pinus Densiflora living leaves, which is the weakest species to the forest fire, was delivered, using variables of heat flux(25 kW/$m^2$, 50 kW/$m^2$, 75 kW/$m^2$). With the equipment of Cone calorimeter, the characteristics of ignition, heat, smoke release, CO and $CO_2$ release, and mass loss were analyzed. Pinus Densiflora living leaves containing moisture of 60.66% were not ignited at the heat flux of variables 25 kW/$m^2$, 50 kW/$m^2$, 75 kW/$m^2$. In proportion to the heat flux value, heat release amount and heat release rate reached maximum value rapidly: higher variables came to the maximum by the half rapidity and the maximum value were twice higher than the former lower variables respectively. As for the smoke release, the less heat flux the variable had, the more smoke release it had, due to incomplete combustion. The release amount of CO and $CO_2$ had more maximum value as the heat flux increased and more radiant heat meaned more carbon oxide. When the forest fire breaks out, therefore, a great amount of CO and $CO_2$ will be released by Pinus Densiflora.

Removal of carbon monoxide using a solid electrolyte cell reactor (고체전해질 전지 반응기를 이용한 일산화탄소의 제거)

  • 신석재;오인환
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.3
    • /
    • pp.112-118
    • /
    • 1996
  • When fossil fuels are burned they produce CO gas because of incomplete combustion. If the CO gas reacts with the hemoglobin in the red blood cells, it may result in death or sequelae. Generally, the CO gas is eliminated in the form of the $$$CO_2$ gas by the oxidation reaction over the platinum catalyst. In this study, the electrochemical CO removal was investgated by using the solid electrolyte cell reactor, the type of which was represented as reactants$/Pt/Y_2O_3-ZrO_2/Pt/Air$. If the overpotential was applied to the platinum working electrode, the conversion could be changed with the overpotential applied. It was found that the oxidation rate could be increased 2.8 times higher than that of the normal condition, i. e. under open circuit conditions when $P_{co}/P_{O_2}$ was 0.5 and overpotential was 0.9V. From these results, it is concluded that the reactor used in this study is more efficient than conventional catalytic reactors.

  • PDF

A Study of the Pollutant Formation and Spectral Radiation Properties in Ceramic Fiber Radiant Burner (세라믹 화이버 버너의 배기 배출물과 분광학적 특성에 관한 연구)

  • Jeong, Yong-Ki;Kim, Young-Soo;Lee, Dae-Rae;Yang, Dae-Bong;Ryu, Jung-Wan;Yun, Alexander;Ha, Man-Young;Chang, Young-June;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.9
    • /
    • pp.790-798
    • /
    • 2007
  • An experimental study was performed to investigate the effects of mixing quality, inlet pressure, nozzle diameter on CO, NO emission and radiation characteristics in porous ceramic fiber radiant burners. Observations of combustion characteristics occurring inside the burner system which was insulated fiber mat, were investigated by measuring emission and radiation characteristics. Combustion was achieved at the firing rate of $88{\sim}99\;kcal/hr$, inlet pressure of $100{\sim}250mmH_2O$. The fiber burner exhibit significant both spectral intensity peaks in the bands at $2.5{\mu}m\;and\;4.0{\mu}m$ relatively. There is a small difference in the variable mixing tube. However spectral intensity increased with the firing rate. CO emissions were found to be strongly dependent on the operating conditions. There was a tendency that CO concentration increased as the firing rate increases. the reason for rise of CO concentration is that is becomes it the relatively rich condition. Relatively low NO emission was observed for the whole operating range. The NO concentration is maximal at the firing rate of approximately 2850 kcal/hr and an air ratio of about 1.

Container System Actively Maintaining High CO2 Concentration for Improved Sensory Quality of Kimchi

  • Lee, Hye Lim;An, Duck Soon;Jung, Yong Bae;Lee, Dong Sun
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.22 no.3
    • /
    • pp.79-84
    • /
    • 2016
  • A kimchi container actively controlling $CO_2$ concentration by timely flushing of $CO_2$ gas was structured and tested in its capability and effectiveness because high $CO_2$ concentration enhances the sensory flavor of the product. The inlet and outlet valves of $CO_2$ gas were programmed to open and close allowing synchronous vent/$CO_2$ flush according to the requirements of its dissolution in the contained kimchi. During the chilled storage, the headspace of container could be maintained at desired high $CO_2$ concentration providing the preferred kimchi in sensory quality compared to control of the conventional container. However, there was no significant difference between the high $CO_2$ container and control (container simply closed with air) in kimchi quality attributes of pH, titratable acidity, total viable bacterial count, Lactobacillus sp. count and Leuconostoc sp. count. The flow rate and time interval of $CO_2$ flushing need to be adjusted considering the kimchi amount, headspace volume and ripening time. The designed system has potential to be applied in refrigerator appliances in homes and food service industry.

Effects of vessel-pipe coupled dynamics on the discharged CO2 behavior for CO2 sequestration

  • Bakti, Farid P.;Kim, Moo-Hyun
    • Ocean Systems Engineering
    • /
    • v.10 no.3
    • /
    • pp.317-332
    • /
    • 2020
  • This study examines the behaviors and properties of discharged liquid CO2 from a long elastic pipe moving with a vessel for the oceanic CO2 sequestration by considering pipe dynamics and vessel motions. The coupled vessel-pipe dynamic analysis for a typical configuration is done in the frequency and time domain using the ORCAFLEX program. The system's characteristics, such as vessel RAOs and pipe-axial-velocity transfer function, are identified by applying a broadband white noise wave spectrum to the vessel-pipe dynamic system. The frequency shift of the vessel's RAO due to the encounter-frequency effect is also investigated through the system identification method. Additionally, the time histories of the tip-of-pipe velocities, along with the corresponding discharged droplet size and Weber numbers, are generated for two different sea states. The comparison between the stiff non-oscillating pipe with the flexible oscillating pipe shows the effect of the vessel and pipe dynamics to the discharged CO2 droplet size and Weber number. The pipe's axial-mode resonance is the leading cause of the fluctuation of the discharged CO2 properties. The significant variation of the discharged CO2 properties observed in this study shows the importance of considering the vessel-pipe motions when designing oceanic CO2 sequestration strategy, including suitable sequestration locations, discharge rate, towing speed, and sea states.