• Title/Summary/Keyword: CO2 Rate

Search Result 5,776, Processing Time 0.035 seconds

High Rate Performance of Li[Co0.50Li0.17Mn0.33]O2 Cathode (Li[Co0.50Li0.17Mn0.33]O2 양극물질의 고율 충방전 특성)

  • Park Yong-Joon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.8
    • /
    • pp.737-743
    • /
    • 2006
  • [ $Li[Co_{0.50}Li_{0.17}Mn_{0.33}]O_2$ ] powder was prepared using a simple combustion method. specially, ratio of 2:1, 3:2, 1:1, 2:3, 1:2 was adopted as acetate source/nitrate source. The diffraction pattern of $Li[Co_{0.50}Li_{0.17}Mn_{0.33}]O_2$ powder showed that this compound could be classified as hexagonal $a-NaFeO_2$ structure (space group : $R\bar{3}m$). The size of powder was less than $1{\mu}m$. Small particle size of cathode powder would give a good ionic and electronic conductivity to cathode electrode, which made of cathode powder. As the increase of nitrate source-ratio, discharge capacity of $Li[Co_{0.50}Li_{0.17}Mn_{0.33}]O_2$ at high charge-discharge rate was increased. When the ratio of acetate source/nitrate source was 1:2, discharge capacity at 10 C rate (2000 mA/g) was 180 mAh/g. It was $10{\sim}15%$ larger than that of powder, which have 2:1 as acetate source/nitrate ratio.

Development of High-Durability Ceramic Hollow Fiber and Performance Evaluation of Contact Membrane Process according to Pressure Conditions (고내구성 세라믹 중공사 개발과 압력 조건에 따른 접촉막 공정의 특성 평가)

  • Lee, Seung Hwan;Jeong, Byeong Jun;Shin, Min Chang;Zhuang, Xuelong;Jung, Jiwon;Lee, Yeon Jun;Won, Dongyeon;Park, Jung Hoon
    • Membrane Journal
    • /
    • v.30 no.6
    • /
    • pp.443-449
    • /
    • 2020
  • In this study, CO2 separation experiment was performed on a CH4/CO2 mixed gas using a ceramic hollow fiber membrane contactor module (HFMC). In order to fabricate high-durability HFMC, a high-durability hollow fiber membrane was prepared and evaluated. HFMC was fabricated using the prepared hollow fiber membrane, and the experiment used a mixture of CH4/CO2 (30% CO2, CH4 balance) and monoethanolamine (MEA). During HFMC operation, the effect of gas and absorbent pressure on the CO2 removal efficiency was evaluated. The CO2 removal efficiency increased as the gas pressure increased, and the CO2 absorption flux also showed a tendency to increase with the liquid flow rate. In addition, when the CO2 absorption rate was less than 40%, LTS-1, a counter-current form where the absorbent enters from the bottom, has higher CO2 removal performance than LTS-2, a countercurrent form in which the absorbent enters from the top. and when the absorption rate was 40% or higher, LTS-2 had higher performance than LTS-1.

Analyses of CO2 Concentration and Balance in a Closed Production System for King Oyster Mushroom and Lettuce (밀폐형 식물생산시스템 내 새송이 버섯과 상추의 혼합 재배 비율에 따른 CO2 농도 변화 및 균형 분석)

  • Jung, Dae Ho;Kim, Chan Kyo;Oh, Kyung Hun;Lee, Dong-Hyeon;Kim, Minsu;Shin, Jong Hwa;Son, Jung Eek
    • Horticultural Science & Technology
    • /
    • v.32 no.5
    • /
    • pp.628-635
    • /
    • 2014
  • The large amount of $CO_2$ emitted from mushrooms during incubation and developmental stages can be utilized in plant production systems as a $CO_2$ source. The objectives of this study were to measure the $CO_2$ emission and absorption rates of mushroom and lettuce, respectively, and to analyze the $CO_2$ concentrations at various ratios of mushroom and lettuce in a closed production system. The $CO_2$ emission rate of king oyster mushrooms (Pleurotus eryngii ( DC.) Qu$\acute{e}$l) and $CO_2$ absorption rate of lettuces (Lactuca sativa L. cv. Asia Heuk Romaine) were measured by using two closed acryl chambers ($1.0m{\times}0.8m{\times}0.5m$) in which indoor temperatures were maintained at $18^{\circ}C$ and $22^{\circ}C$, respectively. The lettuce was grown at a light intensity of PPF $340mol{\cdot}m^{-2}{\cdot}s^{-1}$ and with nutrient solution at EC $1.2dS{\cdot}m^{-1}$. The air was periodically circulated between the two chambers using a diaphragm pump. The $CO_2$ emission rate of the mushroom increased until the $15^{th}$ day after scratching (DAS) and then decreased. The rate also increased with increased indoor temperature. In particular, the $CO_2$ emission rate per fresh weight of fruit body increased by about 3.1 times after thinning compared to before thinning. In terms of $CO_2$ balance, the $CO_2$ emission rates from a bottle (950 mL) of the mushroom at 9, 12, and 14 DAS were equivalent to those of 3, 4.5, and 5.5 lettuce plants at 7, 10, and 12 DAT (days after transplanting), respectively. This work shows that balance in $CO_2$ concentration could be achieved using an appropriate ratio of the two crops in a closed production system.

A Study on the High Repetition Rate Pulsed $CO_2$ Laser Using IGBT (IGBT를 이용한 고반복 펄스형 $CO_2$ 레이저 개발에 관한 연구)

  • Chung, H.J.;Kim, D.W.;Lee, D.H.;Yoon, S.H.;Lee, Y.S.;Kim, H.J.;Cho, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.1072-1074
    • /
    • 1999
  • In this study, it is the purpose to develope a cheap and compact pulsed $CO_2$ laser with pulse repetition rate range of 1 kHz. We used a IGBT switched power supply as a power supply, which is cheap and simple comparing to others. PIC one-chip microprocessor was used for precise control of a laser power supply on the control part. And the laser cavity was fabricated as an axial and water cooled type. The laser performance characteristics as various parameters, such as pulse repetition rate gas pressure, and gas mixture rate have been investigated. The experiment was done under the condition of total pressure of $CO_2:N_2$:He = 1.3:10, 1:1.5:5 1:9:15 from 6 Torr to 15 Torr and pulse repetition rate from 100 Hz to 900 Hz. As a result, the maximum average output was about 20.5 W at the total pressure of 15 Torr, the gas mixture $CO_2:N_2$:He = 1:9:15 and the pulse repetition rate of 700 Hz.

  • PDF

Deriving the Rate Constants of Coal Char-CO2 Gasification using Pressurized Drop Tube Furnace (가압 DTF를 이용한 석탄 촤-CO2 가스화 반응상수 도출)

  • Sohn, Geun;Ye, Insoo;Ra, Howon;Yoon, Sungmin;Ryu, Changkook
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.4
    • /
    • pp.19-26
    • /
    • 2017
  • This study investigates the gasification of coal char by $CO_2$ under high pressures in a drop tube furnace(DTF). The rate constants are derived for the shrinking core model using the conventional method based on the set reactor conditions. The computational fluid dynamic(CFD) simulations adopting the rate constants revealed that the carbon conversion was much slower than the experimental results, especially under high temperature and high partial pressure of reactants. Three reasons were identified for the discrepancy: i) shorter reaction time because of the entry region for heating, ii) lower particle temperature by the endothermic reaction, and iii) lower partial pressure of $CO_2$ by its consumption. Therefore, the rate constants were corrected based on the actual reaction conditions of the char. The CFD results updated using the corrected rate constants well matched with the measured values. Such correction of reaction conditions in a DTF is essential in deriving rate constants for any char conversion models by $H_2O$ and $O_2$ as well as $CO_2$.

Conceptual Design and Feasibility Study on 0.5 MWth Pressurized Chemical Looping Combustor (0.5 MWth 가압 케미컬루핑 연소기 개념설계 및 구현 가능성 조사)

  • RYU, HOJUNG;LEE, DONGHO;JANG, MYOUNGSOO;KIM, JUNGHWAN;BAEK, JEOM-IN
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.2
    • /
    • pp.201-210
    • /
    • 2016
  • To develop a pressurized chemical looping combustor, conceptual design of 0.5 MWth chemical looping combustor was performed by means of mass and energy balance calculations. Based on the conceptual design, reactivity of oxygen carrier and solid circulation rate were selected as key parameters. Sensitivity analysis of those key parameters were conducted with the change of oxygen carrier utilization percent from 5 to 50% and proper solid circulation rate and solid conversion rate to meet 98% of $CO_2$ selectivity were confirmed. Feasibility of 0.5 MWth pressurized chemical looping combustor was confirmed by experimental studies to find real solid circulation rate and $CO_2$ selectivity within the operating conditions based on the conceptual design. We could varied very wide range of solid circulation rate in two interconnected fluidized bed system. We also got enough $CO_2$ selectivity more than 98% in semi-continuous chemical looping combustor using OCN717 oxygen carrier. Consequently, feasibility of 0.5 MWth pressurized chemical looping combustor was confirmed.

Water Gas Shift Reaction Using the Commercial Catalyst Pellets from the Gases by Waste Plastic Gasification (폐플라스틱 가스화에 의한 가스로부터 상용 촉매 펠릿을 이용한 수성가스 전환 반응)

  • JI-MIN YUN;YOUNG-SUB CHOI;JIN-BAE KIM;JIN-BAE KIM;GAB-JIN HWANG
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.4
    • /
    • pp.327-333
    • /
    • 2023
  • The water gas shift reaction was carried out using the commercial catalyst pellet and the simulated gases expected to occur from waste plastic gasification. In the water gas shift reaction, the high temperature shift reaction and the low temperature shift reaction were continuously performed with CO:H2O ratio of 1:2, 1:2.5, and 1:3, and the CO conversion and H2 increase rate were evaluated. The H2 increase rate increased in order to CO:H2O ratio of 1:3 > CO:H2O ratio of 1:2.5 > CO:H2O ratio of 1:2. The CO conversion showed a high value of more than 97% at each CO:H2O ratio. The water gas shift reaction at a CO:H2O ratio of 1:3 showed the highest H2 increase rate and CO conversion.

Maximizing Biomass Productivity and $CO_2$ Biofixation of Microalga, Scenedesmus sp. by Using Sodium Hydroxide

  • Nayak, Manoranjan;Rath, Swagat S.;Thirunavoukkarasu, Manikkannan;Panda, Prasanna K.;Mishra, Barada K.;Mohanty, Rama C.
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.9
    • /
    • pp.1260-1268
    • /
    • 2013
  • A series of experiments were carried out with three native strains of microalgae to measure growth rates, biomass, and lipid productivities. Scenedesmus sp. IMMTCC-6 had better biomass growth rate and higher lipid production. The growth, lipid accumulation, and carbon dioxide ($CO_2$) consumption rate of Scenedesmus sp. IMMTCC-6 were tested under different NaOH concentrations in modified BBM. The algal strain showed the maximum specific growth rate (0.474/day), biomass productivity (110.9 mg $l^{-1}d^{-1}$), and $CO_2$ consumption rate (208.4 mg $l^{-1}d^{-1}$) with an NaOH concentration of 0.005 M on the $8^{th}$ day of cultivation. These values were 2.03-, 6.89-, and 6.88-fold more than the algal cultures grown in control conditions (having no NaOH and $CO_2$). The $CO_2$ fixing efficiency of the microalga with other alternative carbon sources like $Na_2CO_3$ and $NaHCO_3$ was also investigated and compared. The optimized experimental parameters at shake-flask scale were implemented for scaling up the process in a self-engineered photobioreactor. A significant increase in lipid accumulation (14.23% to 31.74%) by the algal strain from the logarithmic to stationary phases was obtained. The algal lipids were mainly composed of $C_{16}/C_{18}$ fatty acids, and are desirable for biodiesel production. The study suggests that microalga Scenedesmus sp. IMMTCC-6 is an efficient strain for biodiesel production and $CO_2$ biofixation using stripping solution of NaOH in a cyclic process.

Experimental Study on the Performance of a $CO_2$ Heat Pump Water Heater ($CO_2$ 급탕 열펌프의 성능 특성에 관한 실험적 연구)

  • Lee, Eung-Chan;Baek, Chang-Hyun;Kang, Hoon;Kim, Yong-Chan;Cho, Hong-Hyun;Cho, Sung-Wook
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.6
    • /
    • pp.367-372
    • /
    • 2009
  • The performance of a $CO_2$ heat pump water heater was measured with a variation of operating conditions such as refrigerant charge amount, outdoor temperature, compressor frequency, EEV opening, and water mass flow rate. The optimum refrigerant charge amount of the $CO_2$ system was 1800 g. At water mass flow rates of 75, 85, and 95 kg/h, the water heating temperatures were 74, 67, and $62^{\circ}C$ and COPs were 2.6, 2.8, and 3.0, respectively. Besides, the compressor frequency and water mass flow rate were adjusted to maintain the water heating temperature at $60^{\circ}C$ with the decrease of outdoor temperature. As the outdoor temperature decreased by $5^{\circ}C$, the compressor frequency increased beyond 60 Hz and the water mass flow rate decreased by 16.7%.

Development of High-Permeability Ceramic Hollow Fiber and Evaluation of CH4/CO2 Separation Characteristics of Membrane Contactor Process (고투과성 세라믹 중공사 개발과 접촉막 공정의 CH4/CO2 분리 특성 평가)

  • Lee, Seung Hwan;Kim, Min Kwang;Jeong, Byeong Jun;Zhuang, Xuelong;Park, Jung Hoon
    • Membrane Journal
    • /
    • v.30 no.4
    • /
    • pp.269-275
    • /
    • 2020
  • In this study, CO2 separation experiment was performed on a CH4/CO2 mixed gas using a ceramic hollow fiber membrane contactor (HFMC). In order to fabricate high-performance HFMC, experiments were conducted to manufacture high-permeability hollow fiber membranes, and the prepared hollow fiber membranes were evaluated through N2 gas permeation experiments. HFMC for CH4/CO2 mixed gas separation was manufactured using the manufactured high-permeability hollow fiber membrane. In the experiment, mixed gas of CH4/CO2 (34.5% CO2, CH4 balance) and monoetanolamine (MEA) was used, and the effect of CO2 removal efficiency on the flow rate of the absorbent was evaluated. The CO2 removal efficiency increased as the liquid flow rate increased, and the CO2 absorption flux also increased with the liquid flow rate.