• Title/Summary/Keyword: CO2 Emissions

Search Result 1,451, Processing Time 0.027 seconds

Analysis of Appropriate Automobile Tax Rate Considering the Average CO2 Emissions by Engine Displacement in Korea (한국의 배기량별 평균 CO2 배출량을 고려한 자동차세의 적정 세율 분석)

  • Hyunwoo Choi;Min Gyeong Jung;Hyeon Woo Jang;Dong Koo Kim
    • Environmental and Resource Economics Review
    • /
    • v.32 no.4
    • /
    • pp.217-238
    • /
    • 2023
  • Currently, automobile tax in Korea is imposed by multiplying the vehicle's engine displacement by a certain tax rate. However, the need for revision is being raised as it is pointed out that the current system does not reflect the immediate task of reducing greenhouse gas emissions. Accordingly, this study focuses on the positive relationship between engine displacement and CO2 emissions, and seeks to calculate an appropriate automobile tax rate considering average CO2 emissions. To this end, first, we estimated the average annual CO2 emissions (kg/vehicle) for each engine displacement using the average CO2 emissions for each vehicle displacement as of 2020. Next, multiple scenarios were analyzed considering the standard tax rate at $75 per ton of CO2 emissions proposed by the IMF (2019). In particular, we compared the case of imposing a uniform carbon tax of $75 and the case of imposing a progressive tax based on CO2 emissions by displacement. According to the results, it was confirmed that the uniform tax rate proposed by the IMF is difficult to apply to Korea as it is due to the impact of a decrease in tax revenue, and a tax scheme needs to be designed appropriately considering maintenance of tax revenue according to the current automobile tax, greenhouse gas reduction effect, and automobile tax reform trends in developed countries. For example, in the case of the K3 (1,598cc) of Kia Motors, a representative compact car sold in Korea, if we compare the tax burdens for each tax scenario, the tax burden will be about 220,000 KRW under the current system, about 79,000 KRW under the uniform tax rate, about 83,000 KRW under the progressive tax rate, and about 240,000 KRW under the progressive tax rate similar to the UK tax system, respectively. In this way, this study identified the current statuses of automobile registration and tax in Korea, and automobile tax reform trends in major developed countries, and analyzed the impact of automobile tax reform considering engine displacement and CO2 emissions, focusing on the tax burden of the people.

Inventory of Carbon Dioxide Emission in Carbon Cycle Community (The case study on Gyeongbuk Bonghwa-gun Chunyang-myeon Seobyeok-ri) (탄소순환마을의 이산화탄소배출량 조사연구 (경상북도 봉화군 춘양면 서벽리를 중심으로))

  • Kim, Hyo-Jin;Byun, Woo-Hyuk;Lim, Min-Woo;Park, Won-Kyoung;Kim, Min-Su
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.4
    • /
    • pp.597-602
    • /
    • 2010
  • The most basic matter to establish forest carbon circulation village is statistic on greenhouse gas emissions. But currently, although there is statistic on greenhouse gas emissions in the level of city or province, there is not statistic on greenhouse gas emission in village unit. According to the results, The model area is located in Seobyeok-ri, Chunyang-myeon, Bonghwa-gun, Gyeongsangbuk-do, the total $CO_2$emissions caused by energy used in the model area was $1,755tCO_2$. Heating accounts for 55% of total emissions followed by 23% for power and 22% for vehicles. The model area emitted $572tCO_2$ due to rice growing and livestock raising, accounting for approximately 24.5% of total $CO_2$ emissions. It is expected that a reduction of as much as $884tCO_2$ emissions will be made from the current $964tCO_2$ to a level of 1/12th that amount, or $80tCO_2$ by replacing heating energy currently used in the model area with wood bioenergy such as wood chips or pellets. In addition, carbon emission reduction is expected for both heating and power by replacing the power consumption in houses, buildings, and street lights with solar power.

Reduction of Carbon-Dioxide Emission Applying Carbon Capture and Storage(CCS) Technology to Power Generation and Industry Sectors in Korea (국내 전력 발전 및 산업 부문에서 탄소 포집 및 저장(CCS) 기술을 이용한 이산화탄소 배출 저감)

  • Wee, Jung-Ho;Kim, Jeong-In;Song, In-Sung;Song, Bo-Yun;Choi, Kyoung-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.9
    • /
    • pp.961-972
    • /
    • 2008
  • In 2004, total emissions of Greenhouse Gases(GHGs) in Korea was estimated to be about 590 million metric tons, which is the world's 10th largest emissions. Considering the much amount of nation's GHG emissions and growing nation's position in the world, GHG emissions in Korea should be reduced in near future. The CO$_2$ emissions from two sub-sections of energy sector in Korea, such as thermal power plant and industry section(including manufacturing and construction industries), was about 300 million metric tons in 2004 and this is 53.3% of total GHG emissions in Korea. So, the mitigation of CO$_2$ emissions in these two section is more important and more effective to reduce the nation's total GHGs than any other fields. In addition, these two section have high potential to qualitatively and effectively apply the CCS(Carbon Capture and Storage) technologies due to the nature of their process. There are several CCS technologies applied to these two section. In short term, the chemical absorption technology using amine as a absorbent could be the most effectively used. In middle or long term, pre-combustion technology equipped with ATR(Autothermal reforming), or MSR-$H_2$(Methane steam reformer with hydrogen separation membrane reactor) unit and oxyfuel combustion such as SOFC+GT(Solid oxide fuel cell-Gas turbine) process would be the promising technologies to reduce the CO$_2$ emissions in two areas. It is expected that these advanced CCS technologies can reduce the CO$_2$ avoidance cost to $US 8.5-43.5/tCO$_2$. Using the CCS technologies, if the CO$_2$ emissions from two sub-sections of energy sector could be reduced to even 10% of total emissions, the amount of 30 million metric tons of CO$_2$ could be mitigated.

A Study on the EU Emissions Trading Schemes (EU의 탄소배출권 거래제도에 관한 연구)

  • Pak, Myong-Sop;Hong, Ran-Ju;Hur, Yun-Seok
    • International Area Studies Review
    • /
    • v.12 no.2
    • /
    • pp.297-324
    • /
    • 2008
  • As greenhouse gas (hereinafter GHGs) emissions have been increasing, the world's climate is also rapidly changed. $CO_2$ is the most important artificial GHGs and the annual emissions amount was increased approximately 80% between 1970 and 2004. After suggesting Kyoto Protocol, EU is the second largest emissions embodiment in the world, set the emissions trading scheme (hereinafter EU-ETS) and is trying to reduce $CO_2$ emissions aggressively. This study focuses on the EU-ETS and EU-ETS market to examine their emissions reduction policy and review the result of their efforts. EU-ETS which is composed of 2-step phases had already completed the first phase and is running on the second phase in 2008. Up to now EU-ETS has been proceeding successfully and the amount of $CO_2$ emissions has been decreased. To prepare for their coming events, countries excluded from Kyoto Protocol fulfillment need to have some implication from EU and have to make up their own plans.

A Study of GHG-AP Integrated Inventories and Alternative Energy Use Scenario of Energy Consumption in the University (대학 내 에너지 소비에 따른 온실가스-대기오염 통합 인벤토리 및 대체 에너지 사용 시나리오 분석)

  • Jung, Jae-Hyung;Kwon, O-Yul
    • Journal of Environmental Science International
    • /
    • v.23 no.9
    • /
    • pp.1643-1654
    • /
    • 2014
  • The university is one of the main energy consumption facilities and thereby releases a large amount of greenhouse gas (GHG). Accordingly, efforts for reducing energy consumption and GHG have been established in many local as well as international universities. However, it has been limited to energy consumption and GHG, and has not included air pollution (AP). Therefore, we estimated GHG and AP integrated emissions from the energy consumed by Seoul National University of Science and Technology during the years between 2010 and 2012. In addition, the effect of alternative energy use scenario was analysed. We estimated GHG using IPCC guideline and Guidelines for Local Government Greenhouse Inventories, and AP using APEMEP/EEA Emission Inventory Guidebook 2013 and Air Pollutants Calculation Manual. The estimated annual average GHG emission was $11,420tonCO_{2eq}$, of which 27% was direct emissions from fuel combustion sectors, including stationary and mobile source, and the remaining 73% was indirect emissions from purchased electricity and purchased water supply. The estimated annual average AP emission was 7,757 kgAP, of which the total amount was from direct emissions only. The annual GHG emissions from city gas and purchased electricity usage per unit area ($m^2$) of the university buildings were estimated as $15.4kgCO_{2eq}/m^2$ and $42.4tonCO_{2eq}/m^2$ and those per person enrolled in the university were $210kgCO_{2eq}$/capita and $577kgCO_{2eq}$/capita. Alternative energy use scenarios revealed that the use of all alternative energy sources including solar energy, electric car and rain water reuse applicable to the university could reduce as much as 9.4% of the annual GHG and 34% of AP integrated emissions, saving approximately 400 million won per year, corresponding to 14% of the university energy budget.

Emission Characteristics of a Gasoline Engine Using Ethanol Blended Fuel (가솔린 기관의 에탄올혼합연료의 배출가스 특성에 관한 연구)

  • 조행묵;정동화
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.516-521
    • /
    • 2004
  • In this paper, the effects of ethanol blended gasoline on emissions and their catalytic conversion efficiencies characteristics were investigated in gasoline engine with an electronic fuel injection. The results showed that the increase of ethanol concentration in the blended fuels brought the reduction of THC and $CO_2$ emissions from the gasoline engine. THC emissions were drastically reduced up to thirty percent. And brake specific fuel consumption was increased. but brake specific energy consumption was similar level. However. unburned ethanol and acetaldehyde emissions increased. The conversion efficiency of Pt/Rh based three-way catalysts and the effect of ethanol on CO and NOx emissions were investigated by the change of engine speed. load and air/fuel ratio. Furthermore, the ethanol blended fuel results in the reduction effect of THC. CO and NOx emissions at idle speed.

Assessment of Greenhouse Gas Emissions from Landfills Based on Energy Recovery and Surface Emissions of Landfill Gas (매립가스의 에너지 회수 및 표면발산을 고려한 매립장 온실가스 배출 평가)

  • Lee, Yonghyun;Kwon, Yongchai;Chun, Seung-Kyu
    • New & Renewable Energy
    • /
    • v.16 no.3
    • /
    • pp.27-34
    • /
    • 2020
  • This study involved a total budget analysis on the greenhouse gas (GHGs) emissions of landfills, focusing on surface emissions and the effect on emissions reductions of generating landfill gas (LFG) electricity from March 7, 2007 to December 31, 2018. The GHGs reduction effect from the electricity generation using 536.6 × 103 tCO2 of CH4 was only 5.8% of the GHGs from surface emissions of 9,191 × 103 tCO2. In the total budget, the collection ratio should be over 95% if the reduction effect is greater than the surface emissions. The correlation coefficient for the relationship between the LFG collection ratio and GHGs reduction was -0.89. An additional effect of lowering CH4 content may occur if the surface emitting flux of LFG decreased with an increase in the collection ratio. The unit reduction effect of GHGs by suppressing surface emissions was 4174 tCO2/TJ. This was far greater than that of LFG power generated (54.3 tCO2/TJ), demonstrating that surface emission control is the most important measure by which to mitigate GHGs emission.

An Analysis of the Impacts of FDI Types on CO2 Emissions - Focus on Scale Effects and Technique Effects - (FDI 유형별 CO2 배출량에 미치는 영향 분석 - 규모효과와 기술효과를 중심으로 -)

  • Hwang, Yun-Seop;Park, Junghoon;Lee, Sang Whi
    • International Commerce and Information Review
    • /
    • v.17 no.3
    • /
    • pp.379-402
    • /
    • 2015
  • The purpose of this study is to determine whether there is a significant difference in impacts decomposed into scale effects and technique effects on $CO_2$ emissions between Greenfield FDI and M&A FDI flows into Korean manufacturing sectors, ultimately leading to clarify the relationship between FDI and environmental pollution. To this end, the research constructed a simultaneous model to analyze coincidental relationship of influence and interactions between each variable. Archival data, spanning the 15 years period from 1995 to 2009, is industry-level panel data on 13 Korean manufacturing sectors, and it is empirically analyzed with three-stage least squares (3SLS) method. Key findings can be summarized into two parts. First of all, Greenfield FDI has a greater impact on increasing industrial gross output, resulting in more $CO_2$ emissions than M&A FDI through scale effects. Secondly, technique effects of FDI have a bigger impact on $CO_2$ emissions than scale effects, implying that this inflow of FDI into Korea contributes positively to the reduction of $CO_2$ emissions. These findings are expected to play a meaningful role in establishing FDI policies with consideration of the environment by giving the implication that different incentives for each FDI type should be considered to maximize the effect of environmental protection.

  • PDF

Characteristics of Real-Driving CO2 and NOx Emissions Compared to Test Modes on Euro-6 LDVs Equipped with SCR and LNT (SCR 및 LNT가 적용된 Euro-6 소형 경유차의 실제도로 주행과 인증모드에서의 CO2 및 NOx 배출특성의 비교)

  • Lee, Jongtae;Kim, Jeongsoo;Chon, Mun Soo;Cha, Junepyo
    • Journal of ILASS-Korea
    • /
    • v.21 no.4
    • /
    • pp.200-206
    • /
    • 2016
  • Recently, the certification procedure for exhaust emission regulation of LDV has tested with the NEDC mode in the laboratory. But the on-road exhaust emissions exceed the standard emission limits. Therefore, it is important to analyze the real-driving emissions (RDE) with a portable emissions measurement system (PEMS). In present study, the on-road emissions were measured with a PEMS and evaluated by moving averaging window (MAW) method. Also, it was compared with the $CO_2$ and $NO_x$ emissions for real-driving and test modes from euro-6 light-duty vehicles equipped with SCR and LNT systems. In results, on-road $NO_x$ emission has been 2.3-10.0 times higher than the standard $NO_x$ emission limit on NEDC mode. The reason was that the test modes did not reflect traffic and various real-driving patterns sufficiently.

Performance Assessment of Building Envelopes I: Double Skin Facade (외피 친환경 성능평가 I: 이중외피)

  • Kim, Deuk-Woo;Park, Cheol-Soo
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.77-82
    • /
    • 2009
  • Many countries have been interested in sustainable development of buildings for environmental preservation. Thus it is significant to assess building envelopes in terms of $CO_2$ emissions owing to Kyoto Protocol. In this paper, a Double Skin Facade(DSF) installed in a general office building was assessed by $CO_2$ emissions(one of the performance-based assessment). To predict $CO_2$ emissions caused by the building energy consumption, the dynamic simulation program(Energy Plus) and $CO_2$ emission factor was used. Because DSF has various airflow regimes, pre-simulation runs were conducted to decide proximate optimal airflow regimes depending on seasonal variation. It is shown that the DSF can achieve 17.1-36.5% of annual energy savings.

  • PDF