• Title/Summary/Keyword: CO tube

Search Result 807, Processing Time 0.031 seconds

Cooling Heat Transfer Characteristics of CO2 in a Brazing Type Small Diameter Copper Tube (브레이징식 동세관내 CO2의 냉각 열전달 특성)

  • Oh, Hoo-Kyu;Son, Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.827-834
    • /
    • 2009
  • The cooling heat transfer coefficient of $CO_2$ in a brazing type small diameter tube was investigated experimentally. The main components of the refrigerant loop are a receiver, a $CO_2$ compressor, a mass flow meter, an evaporator and a brazing type small diameter tube as a test section. The mass flux of $CO_2$ is $400{\sim}1600$ [kg/$m^2s$], the mass flowrate of coolant were varied from 0.15 to 0.3 [kg/s], and the cooling pressure of gas cooler were from 8 to 10 [MPa]. The cooling heat transfer coefficients of the brazing type small diameter copper tube is about $4{\sim}11.7%$ higher than that of the conventional type small diameter copper tube. In comparison with test results and existing correlations, correlations failed to predict the cooling heat transfer coefficient of $CO_2$ in a brazing type small diameter copper tube. therefore, it is necessary to develope reliable and accurate predictions determining the cooling heat transfer coefficient of $CO_2$ in a brazing type small diameter copper tube.

A Study on Emission Characteristics of Inserting CO Tube (CO튜브 삽입에 따른 오염 물질 배출특성에 관한 연구)

  • Lee, Jae-Park;Kim, Jong-Min;Lee, Seung-Ro;Lee, Chang-Eon
    • Journal of Energy Engineering
    • /
    • v.19 no.3
    • /
    • pp.182-187
    • /
    • 2010
  • This study was the effect of inserting CO tube on $NO_x$ and CO emission characteristics in a compact combustion chamber. In detail, $NO_x$ and CO emission characteristics with changing of distance due to inserting CO tube between a burner and a main heat exchanger were investigated. For this study, the commercial program, FLUENT with GRI 2.11 detail reaction mechanism, was used for the numerical study and a commercial heat exchanger was tested for the experimental study. As results, when the CO tube was inserted between a burner and a main heat exchanger, it was verified that $NO_x$ and CO emissions was decreased simultaneously as CO tube was closed to a burner and the distance between CO tube and a main heat exchanger was increased.

Experimental Study on Compact type CO2 Gas Cooler(1) - Heat Flowrate and Pressure Drop in a Multi-Tube-In-Tube Helical Coil Type Gas Cooler - (CO2 가스쿨러용 콤팩트열교환기 개발에 관한 연구(1) -다중관식 헬리컬 코일형 가스냉각기내 CO2의 열유량과 압력강하-)

  • Oh, Hoo-Kyu;Son, Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.30-36
    • /
    • 2010
  • The heat flowrate and pressure drop of $CO_2$ in a multi-tube-in-tube helical coil type gas cooler were investigated experimentally. The mass flowrate of $CO_2$ and coolant were varied from 0.06 to 0.075 [kg/s], respectively and the cooling pressure of gas cooler were from 8 to 10 [MPa]. The heat flowrate of $CO_2$ in the test section is increased with the increase in mass flowrate of coolant, the cooling pressure and mass flowrate of $CO_2$. The pressure drop of $CO_2$ is decreased with the decrease in mass flowrate of coolant and $CO_2$, but decreased with increase in cooling pressure of $CO_2$. The heat flowrate of $CO_2$ in the multi-tube-in-tube helical coil type gas cooler is greatly higher than that of $CO_2$ in the double pipe type gas cooler, while the pressure drop of $CO_2$ in the multi-tube-in-tube helical coil type gas cooler is greatly lower than that of $CO_2$ in the double pipe type gas cooler. Therefore, in case of the application of $CO_2$ at the multi-tube-in-tube helical coil type gas cooler, it is expected to carry out the high-efficiency, high-performance and compactness of gas cooler.

Flow Characteristics in an Adiabatic Capillary Tube of Carbon Dioxide ($CO_2$ 단열 모세관내 유동 특성)

  • Roh, Geon-Sang;Son, Chang-Hyo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.6
    • /
    • pp.537-544
    • /
    • 2008
  • In this paper, flow characteristics of an adiabatic capillary tube in a transcritical $CO_2$ have been investigated employing the homogeneous model. The model is based on fundamental equations of mass, energy and momentum which are solved simultaneously. Two friction factors(Churchill) and viscosity(McAdams) are comparatively used to investigate the flow characteristics. Supercritical and subcritical thermodynamic and transport properties of $CO_2$ are calculated employing EES property code. Flow characteristics analysis of $CO_2$ adiabatic capillary tube is presented to offer the basic design data for the operating parameters. The operating parameters considered in this study include inlet temperature and pressure of an adiabatic capillary tube, evaporating temperature and inner diameter tube. The main results were summarized as follows : inlet temperature and pressure of an adiabatic capillary tube, evaporating temperature, mass flowrate and inner diameter of $CO_2$ adiabatic capillary tube have an effect on length of an adiabatic capillary tube.

레이저 조사에 의한 endotracheal tubes의 안정성에 대한 연구

  • 정필상;김영훈;정필섭;이정구
    • Proceedings of the KOR-BRONCHOESO Conference
    • /
    • 1995.04a
    • /
    • pp.91.2-91
    • /
    • 1995
  • 레이저를 이용한 구강 및 인후두 수술시 endotracheal tubes의 손상은 치명적이라 아니 할 수 없다. 이에 저자들은 여러 가지 endotracheal tube를 실험 재료로 사용하여 보다 안전한 레이저 수술을 위해서 적절한 endotracheal tube를 찾기 위해 본 실험을 시행하였다. 실험에 사용된 tube는 총 5가지 - $Bivona^{TM}$, Xomed Laser Shield $II^{TM}$, Mallinckrodt Laser-$Flex^{TM}$, Rusch tube wrapped with aluminium foil tape(Rusch tube), Polyvinylchloride tube wrapped with aluminium foil tape(PVC tube) - 가 사용되었다. 사용된 레이저는 KTP/532 와 $CO_2$ laser 이며 모든 실험에서 tube를 $FiO_2$ 95%-98% 상태에서 조사하여 각각 5회씩 실시하였다. tube에 이상이 없거나 발화가 되지 않는 한 90초 동안 시행하였다. 실험 결과, KTP/532 조사시 $Bivona^{TM}$, Mallinckrodt 와 PVC tube는 심한 손상을 받거나 발화하였으며 Xomed 와 Rusch tube는 안정된 상태를 유지하였고 $CO_2$ Laser 조사시는 KTP/532 조사시와 유사한 결과를 얻었다. 한편 혈액을 endotracheal tube에 도포한 상황에서는 모든 tube가 더 심한 손상을 보이는 바 KTP/532 조사시 Xomed는 상당히 안정된 상태를 유지하였고 나머지 tube는 심한 손상 또는 발화를 보이고 $CO_2$ Laser 조사시 $Bivona^{TM}$ 와 Mallinckrodt는 발화하였고 Rusch tube는 표면이 녹았으며 Xomed와 PVC tube도 1례에서 발화하였다. 향후 이비인후과 영역에서의 레이저 수술이 증가함을 예상할 때 좀 더 레이저에 대하여 안정적이고 경제적인 endotracheal tube의 개발이 필요할 것으로 사료된다.

  • PDF

A Study on the CO2 Removal Efficiency with Aqueous MEA and Blended Solutions in a Vortex Tube Type Absorber (Vortex Tube 형 흡수장치에서 MEA와 혼합흡수용액을 이용한 CO2 제거 효율 고찰)

  • Ryu, Woo-Jung;Han, Keun-Hee;Choi, Won-Kil;Lee, Jong-Sub;Park, So-Jin
    • Korean Chemical Engineering Research
    • /
    • v.47 no.6
    • /
    • pp.795-800
    • /
    • 2009
  • In this study, the $CO_2$ removal characteristics of the Vortex tube type absorbtion apparatus were investigated to enhance the compactness of $CO_2$ absorption process and to reduce the amount of absorbing solution of the $CO_2$ separation process. The Vortex tube with the diameter of 17 mm and the length of 250mm was introduced in the experimental apparatus to treat $20Nm^3/hr$ of $CO_2$ containing flue gas. The flue gases for experiments containing 11~13 vol% of $CO_2$ were supplied from the coal-firing CFBC power plant with 12 ton/hr of steam producing capacity. The mixed solutions of 20 wt% of MEA as base solution with the adding solutions like HMDA, AMP and KOH were used as absorbents. The experiments were executed under the various conditions like the absorbing solution concentrations in the range of 20 to 50 wt%, the flow rate of $CO_2$ containing flue gases in the range of 6 to $15Nm^3/hr$ and the flow rate of absorbing solution in the range of 1.0 to 3.0 l/min. As a results, the $CO_2$ removal efficiency of mixed absorbent of 20 wt% of MEA with HMDA was remarkable. From this study, we concluded that the efficient separation of $CO_2$ from flue gases using the features of the Vortex tube type absorbing unit for gas/liquid contact and the separation of gas/liquid be possible. But more works are needed to increase the $CO_2$ removal efficiency of Vortex tube process.

In Vitro Maturation of Porcine Oocytes in a Dry Incubator without $CO_2$ Gas Supplement

  • Park, Kwang-Wook
    • Reproductive and Developmental Biology
    • /
    • v.36 no.3
    • /
    • pp.141-145
    • /
    • 2012
  • The present study was conducted to develop a simple method for porcine oocyte maturation without $CO_2$ regulation. In experiment 1, we evaluated that the effect of $CO_2$ non-supplement on porcine oocyte maturation. Cumulusoocyte complexes (COCs) were collected from 2~6 mm follicles and divided into three groups (Control, tube-$CO_2$, and tube-non-$CO_2$). For control, COCs were cultured in 4-well multidish in a $CO_2$ incubator. For tube-$CO_2$, COCs were cultured in a round-bottom tube in a $CO_2$ incubator, and for tube-non-$CO_2$, COCs were cultured in a round-bottom tube sealed tightly without $CO_2$ supplement in a dry incubator. The proportion of oocytes reached to metaphase II (M-II) was not significantly different among three groups (87.9% to 91.4%). In experiment 2, we evaluated the effect of $CO_2$ non-supplement during oocyte maturation on development of embryos. Oocytes with a polar body were divided into two groups (Control and tube-non-$CO_2$) and applied 1.1 kV/cm or 1.2 kV/cm voltages for parthenogenetic activation. After activation, embryos were cultured for 6 days and examined the development. The proportion of embryos cleaved was not significantly different among treatment (86.3% to 91.5%). The proportion of embryo reached to blastocyst stage was not significantly different among treatment (13.9% to 25.2%). The cell number of blastocysts was not significantly different among treatment (29.0 to 32.4). In conclusion, oocytes cultured in a dry incubator without $CO_2$ supplement have enough competence to development after parthenogenetic activation. These results would be useful for transporting oocytes or embryos a long distance.

An Experimental Study on the Energy Separation of the $100Nm^3$/hr Vortex Tube for $CO_2$ Absorption ($CO_2$ 흡수용 $100Nm^3$/hr급 Vortex Tube의 에너지분리 특성에 관한 실험적 연구)

  • Kim, Chang-Su;Han, Keun-Hee;Park, Sung-Young
    • Clean Technology
    • /
    • v.16 no.3
    • /
    • pp.213-219
    • /
    • 2010
  • Vortex tube is the device that can separate small particles from the compressed gas, as well as compressed gas into hot and cold gas. Due to energy and particle separation ability, a vortex tube can be used as the main component of the $CO_2$ absorption device. In this study, experimental approach has been performed to analyze the energy separation characteristics of the vortex tube. To obtain the preliminary design data, energy separation characteristics of the vortex tube has been tested for orifice diameter, nozzle area ratio, and tube length. As a result, the orifice diameter is the major factor of the vortex tube design. The nozzle area ratio and tube length have a minor effect on the energy separation performance. For Dc=0.6D, AR=0.14~0.16, and L=16D, maximum energy separation has been occurred. The result from this study can be used as the basic design data of the $100Nm^3$/hr class vortex tube applied to the $CO_2$ absorption device. Compared with the $CO_2$ absorption process containing an absorption tower, the process with a vortex tube is expected to have a huge advantage of saving the installation space and the operating cost.

Experimental Study on Heat Transfer Performance of CO2 in a Multi-Tube Type Gas Cooler of Inner Diameter Tube of 1.77 mm (내경 1.77 mm의 다중관식 가스냉각기내 CO2 전열 성능에 대한 실험적 연구)

  • Son, Chang-Hyo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.5
    • /
    • pp.439-444
    • /
    • 2008
  • The heat capacity and pressure drop of $CO_2$ and coolant in a multi-tube type gas cooler were investigated experimentally. The main components of the refrigerant loop are a receiver, a $CO_2$ compressor, a mass flow meter, an evaporator and a multi-tube type gas cooler as a test section. The mass flowrate of $CO_2$ and coolant were varied from 0.06 to 0.075 [kg/s], respectively and the cooling pressure of gas cooler were from 8 to 10 [MPa]. The heat capacity of $CO_2$ in the test section is increased with the increment in mass flowrate of coolant, the cooling pressure and mass flowrate of $CO_2$. The pressure drop of $CO_2$ is decreased with the decrease in mass flowrate of coolant and $CO_2$, but decreased with increase in cooling pressure of $CO_2$. The heat capacity of $CO_2$ per unit heat transfer area of gas cooler is greatly high. Therefore, in case of the application of $CO_2$ at the multi-tube type gas cooler, it is expected to carry out the high-efficiency, high-performance and compactness of gas cooler.

A Study on the Refrigerant Distribution in a Parallel Flow Micro-Channel $CO_2$ Evaporator (평행류형 마이크로채널 이산화탄소 증발기에서 냉매분배에 관한 연구)

  • Jeong, Si-Young;Kim, Dae-Hwan
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1079-1083
    • /
    • 2009
  • In this study, the distribution of $CO_2$ in an evaporator with 10 parallel micro channel aluminum tubes are experimentally investigated. Each tube has 6 circular micro channels with a diameter of 0.8mm. The tubes are heated with electric resistance wires, and the distribution of $CO_2$ into each tube is investigated by measuring the outer wall temperature. The outer wall temperature was found to be higher at the exit part of the top tube. It is thought that the $CO_2$ vapor at the upper part of the header reduces the mass flow rate of $CO_2$ into the top tube.

  • PDF