• Title/Summary/Keyword: CO gas sensing

Search Result 219, Processing Time 0.023 seconds

Zinc Oxide Wire-Like Thin Films as Nitrogen Monoxide Gas Sensor

  • Hung, Nguyen Le;Kim, Hyojin;Kim, Dojin
    • Korean Journal of Materials Research
    • /
    • v.25 no.7
    • /
    • pp.358-363
    • /
    • 2015
  • We present an excellent detection for nitrogen monoxide (NO) gas using polycrystalline ZnO wire-like films synthesized via a simple method combined with sputtering of Zn metallic films and subsequent thermal oxidation of the sputtered Zn nanowire films in dry air. Structural and morphological characterization revealed that it would be possible to synthesize polycrystalline hexagonal wurtzite ZnO films of a wire-like nanostructure with widths of 100-150 nm and lengths of several microns by controlling the sputtering conditions. It was found from the gas sensing measurements that the ZnO wire-like thin film gas sensor showed a significantly high response, with a maximum value of 29.2 for 2 ppm NO at $200^{\circ}C$, as well as a reversible fast response to NO with a very low detection limit of 50 ppb. In addition, the ZnO wire-like thin film gas sensor also displayed an NO-selective sensing response for NO, $O_2$, $H_2$, $NH_3$, and CO gases. Our results illustrate that polycrystalline ZnO wire-like thin films are potential sensing materials for the fabrication of NO-sensitive high-performance gas sensors.

$CO_2$ Sensing Characteristics of Carbon-nanofibers Based on Effects of Porosity and Amine Functional Group (다공성 및 아민 작용기에 따른 탄소나노섬유의 $CO_2$ 감응특성)

  • Kim, Jong Gu;Kang, Seok Chang;Shin, Eunjeong;Kim, Da Young;Lee, Jin Hee;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.23 no.1
    • /
    • pp.47-52
    • /
    • 2012
  • Porous carbon nanofibers were prepared as a gas sensor electrode to study the $CO_2$ sensing property based on effects of porosity and introduced amine functional groups. Electrospun fibers were obtained by using electrospinning method with polyacrylonitrile precursor and they were treated by the thermal treatment and chemical activation. Amine functional groups were introduced by the liquid state treatment using diethylenetriamine. The specific surface area increased up to $2000m^2/g$ by the chemical activation. The Introduced amine functional group was identified using FT-IR spectroscopy. $CO_2$ gas sensing property was improved as four folds via introduced amine functional groups on the activated carbon nanofiber. In conclusion, the gas sensing property was improved based on the developed porosity by the chemical activation and the chemical attraction of $CO_2$ gas by introduced functional groups.

Low temperature-operating NiO-CoO butane gas sensors

  • Jung, Dong-Ho;Choi, Soon-Don;Min, Bong-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.303-307
    • /
    • 2008
  • $NiO,\;Cu_2O,\;Mn_2O_3$ and $Cr_2O_3$ as p-type semiconductors were added in CoO with 15 wt.% ethylene glycol binder and measured the butane gas sensing characteristics. The highest sensitivity is obtained for the NiO-CoO sensors. CoO-20 at.% NiO sensor with 15 wt.% ethylene glycol binder sintered at $1100^{\circ}C$ for 24 h exhibits high sensitivity of 90 % to 5000 ppm butane gas at the sensor temperature of $250^{\circ}C$, compared to low sensitivities at the low operating temperature for commercial sensors. Response and recovery times are, respectively, within few seconds and 1min in the static flow system, indicating rapid adsorption and desorption of butane gas on sensor surface even at this low temperature.

CO Gas Sensing Characteristic of ZnO Thin Film/Nanowire Based on p-type 4H-SiC Substrate at 300℃ (P형 4H-SiC 기판에 형성된 ZnO 박막/나노선 가스 센서의 300℃에서 CO 가스 감지 특성)

  • Kim, Ik-Ju;Oh, Byung-Hoon;Lee, Jung-Ho;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.2
    • /
    • pp.91-95
    • /
    • 2012
  • ZnO thin films were deposited on p-type 4H-SiC substrate by pulsed laser deposition. ZnO nanowires were formed on p-type 4H-SiC substrate by furnace. Ti/Au electrodes were deposited on ZnO thin film/SiC and ZnO nanowire/SiC structures, respectively. Structural and crystallographical properties of the fabricated ZnO thin film/SiC and ZnO nanowire/SiC structures were investigated by field emission scanning electron microscope and X-ray diffraction. In this work, resistance and sensitivity of ZnO thin film/SiC gas sensor and ZnO nanowire/SiC gas sensor were measured at $300^{\circ}C$ with various CO gas concentrations (0%, 90%, 70%, and 50%). Resistance of gas sensor decreases at CO gas atmosphere. Sensitivity of ZnO nanowire/SiC gas sensor is twice as big as sensitivity of ZnO thin film/SiC gas sensor.

Sensing Characteristics of Thin Pt/$SnO_2$Composite Film to CO Gas (Pt/$SnO_2$복합체 박막의 CO 가스감지특성)

  • 김동현;이상훈;송호근;김광호
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.12
    • /
    • pp.1135-1139
    • /
    • 2000
  • 본 연구에서는 Pt/Sn $O_2$박막의 CO 감지특성을 향상시키기 위하여 표면 형상을 제어하였다. Pt/Sn $O_2$계 박막센서의 최적 동작온도는 175$^{\circ}C$이었다. Pt가 12초 동안 증착된 Sn $O_2$가 200ppm의 CO 가스에 대하여 1.23의 최대감도를 나타내었고, 그 이상의 Pt 증착시간 증가에 따라 Sn $O_2$위의 Pt의 coverage가 증가하여 센서의 감도를 감소시켰다. 다층박막(multi-layer thin film)의 단층의 Pt/Sn $O_2$복합체 위에 다시 Sn $O_2$및 Pt의 cluster 층들을 연속적으로 증착함으로서 제작되었다. 단지 하나의 Pt 층만을 증착한 Sn $O_2$막보다 다층의 Pt/Sn $O_2$막이 더욱 우수한 감도( $R_{air}$/ $R_{co}$=1.72, CO: 200 ppm)를 나타내었다. Pt/Sn $O_2$다층박막의 우수한 감도의 원인은 Pt와 Sn $O_2$사이의 계면적 증대 때문인 것으로 생각되어 진다.다.

  • PDF

Fabrication of Stack-Structured Gas Sensor of LaCrxCo1-xO3/Li1.3Al0.3Ti1.7(PO4)3 and Its NOx Sensing Properties (LaCrxCo1-xO3/Li1.3Al0.3Ti1.7(PO4)3의 적층구조를 가지는 가스센서 제조와 그의 NOx 검지특성)

  • Lee, Young-Sung;Shimizu, Y.;Song, Jeong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.25 no.8
    • /
    • pp.423-428
    • /
    • 2015
  • Impedancemetric $NO_x$ (NO and $NO_2$) gas sensors were designed with a stacked-layer structure and fabricated using $LaCr_xCo_{1-x}O_3$ (x = 0, 0.2, 0.5, 0.8 and 1) as the receptor material and $Li_{1.3}Al_{0.3}Ti_{1.7}(PO_4)_3$ plates as the solid-electrolyte transducer material. The $LaCr_xCo_{1-x}O_3$ layers were prepared with a polymeric precursor method that used ethylene glycol as the solvent, acetyl acetone as the chelating agent, and polyvinylpyrrolidone as the polymer additive. The effects of the Co concentration on the structural, morphological, and $NO_x$ sensing properties of the $LaCr_xCo_{1-x}O_3$ powders were investigated with powder X-ray diffraction, field emission scanning electron microscopy, and its response to 20~250 ppm of $NO_x$ at $400^{\circ}C$ (for 1 kHz and 0.5 V), respectively. When the as-prepared precursors were calcined at $700^{\circ}C$, only a single phase was detected, which corresponded to a perovskite-type structure. The XRD results showed that as the Co concentration of the $LaCr_xCo_{1-x}O_3$powders increased, the crystal structure was transformed from an orthorhombic phase to a rhombohedral phase. Moreover, the $LaCr_xCo_{1-x}O_3$ powders with $0{\leq}x<0.8$ had a rhombohedral symmetry. The size of the particles in the $LaCr_xCo_{1-x}O_3$powders increased from 0.1 to $0.5{\mu}m$ as the Co concentration increased. The sensing performance of the stack-structured $LaCr_xCo_{1-x}O_3/Li_{1.3}Al_{0.3}Ti_{1.7}(PO_4)_3$ sensors was found to divide the impedance component between the resistance and capacitance. The response of these sensors to NO gas was more sensitive than that to $NO_2$ gas. Compared to other impedancemetric sensors, the $LaCr_{0.8}Co_{0.2}O_3/Li_{1.3}Al_{0.3}Ti_{1.7}(PO_4)_3$ sensor exhibited good reversibility and reliable sensingresponse properties for $NO_x$ gases.

The Doping and Plasma Effects on Gas Sensing Properties of α-Fe2O3 Thin Film

  • Choi, J.Y.;Jang, G.E.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.5
    • /
    • pp.189-193
    • /
    • 2004
  • Pure and Sn or Pt doped $\alpha-Fe_2O_3$ thin films were prepared on $Al_2O_3$ substrates by RF-magnetron sputtering method and the sensitivities were compared. It was found that pure $\alpha-Fe_2O_3$ thin films did not exhibit much selectivity in CO and $i-C_4H_{10}$ gases while it showed the high sensitivity in proportion to the gas concentration of $C_2H_{5}OH$ gas. Pt-doped $\alpha-Fe_2O_3$ showed to be alike sensing properties as pure $\alpha-Fe_2O_3$ thin film in $C_2H_{5}OH$ gas. However, Sn-doped $\alpha-Fe_2O_3$ thin films exhibited the excellent sensitivity and selectivity in Hz gas. After microstructure modification by plasma etching on pure $\alpha-Fe_2O_3$ thin films, the gas sensing characteristics were dramatically changed.

Trimethylamine Sensing Characteristics of Molybdenum doped ZnO Hollow Nanofibers Prepared by Electrospinning (전기방사방법에 의해 합성된 ZnO 중공 나노섬유의 trimethylamine 가스 감응 특성)

  • Kim, Bo-Young;Yoon, Ji-Wook;Lee, Chul-Soon;Park, Joon-Shik;Lee, Jong-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.419-422
    • /
    • 2015
  • Pure and Mo-doped ZnO hollow nanofibers were prepared by single capillary electrospinning and their gas sensing characteristics toward 5 ppm ethanol, trimethylamine (TMA), CO and $H_2$ were investigated. The gas responses and responding kinetics were dependent upon sensing temperature and Mo doping. Mo-doped ZnO hollow nanofibers showed high response to 5 ppm TMA ($R_a/R_g=111.7$, $R_a$: resistance in air, $R_g$: resistance in gas) at $400^{\circ}C$, while the responses of pure ZnO hollow nanofibers was low ($R_a/R_g=47.1$). In addition, the doping of Mo enhanced selectivity toward TMA. The enhancement of gas response and selectivity to TMA by Mo doping to ZnO nanofibers was discussed in relation to the interaction between basic analyte gas and acidic additive materials.

A Study on the USN Zigbee Sensor Node for Transmission to Harmful Gas(CO, CO2) Sensing Data (유해가스(CO, CO2) 감지정보 전송을 위한 USN 지그비센서노드 구현)

  • Cheon, Dong-Jin;Park, Young-Jik;Lee, Seung-Ho;Kim, Jeong-Seop;Kwak, Dong-Kurl;Jung, Do-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.7
    • /
    • pp.1302-1308
    • /
    • 2010
  • In this study, Zigbee Sensor Node to transmit harmful gases CO and $CO_2$ information using wireless communication within the ground and underground structures were developed. Wireless communication protocol was used Zigbee Stack included IEEE 802. 15.4 MAC protocol. For wireless transmission of detected harmful gas signal from ADC of MCU was implemented Zigbee Sensor Node that was developed protocol using Serial-Port-Profile(SPP) here. The proposed Zigbee Sensor Node was verified transmission distance from experiments. Transmission distance was into 90m in experiments. Distance experiments were measured at 10m intervals using sine & pulse wave input signal at indoors. The proposed Route Sensor Node was applied mesh routing protocol. When built up USN(Ubiquitous Sensor Network)using Route Sensor Node, transmission distance was not limited. On the experimental results, harmful gas values between direct measurements and USN measurements were consistent. The semiconductor CO sensor and N-DIR $CO_2$ sensor module as a harmful sensor was used. Therefore, the proposed Zigbee Sensor Node was verified about reliability and validity to build USN for transmission of harmful gas information.

Highly Porous Tungsten Oxide Nanowires As Resistive Sensor for Reducing Gases

  • Nguyen, Minh Vuong;Hoang, Nhat Hieu;Jang, Dong-Mi;Jung, Hyuck;Kim, Do-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.16.1-16.1
    • /
    • 2011
  • Gas sensor properties of $WO_3$ nanowire structures have been studied. The sensing layer was prepared by deposition of tungsten metal on porous single wall carbon nanotubes followed by thermal oxidation. The morphology and crystalline quality of $WO_3$ material was investigated by SEM, TEM, XRD and Raman analysis. A highly porous $WO_3$ nanowire structure with a mean diameter of 82 nm was obtained. Response to CO, $NH_3$ and $H_2$ gases diluted in air were investigated in the temperature range of $100{\sim}340^{\circ}C$ The sensor exhibited low response to CO gas and quite high response to $NH_3$ and $H_2$ gases. The highest sensitivity was observed at $250^{\circ}C$ for $NH_3$ and $300^{\circ}C$ for $H_2$. The effect of the diameters of $WO_3$ nanowires on the sensor performance was also studied. The $WO_3$ nanowires sensor with diameter of 40 nm showed quite high sensitivity, fast response and recovery times to $H_2$ diluted in dry air. The sensitivity as a function of detecting gas concentrations and gas sensing mechanism was discussed. The effect of dilution carrier gases, dry air and nitrogen, was examined.

  • PDF