• Title/Summary/Keyword: CO conversion

Search Result 1,496, Processing Time 0.027 seconds

Anionic Polymerization of 2-Pyrrolidone and $\varepsilon$-Caprolactam via $CO_2-KOH$ Catalysis (Ⅰ) ($CO_2$/KOH Catalysis 에 의한 2-Pyrrolidone 과 $\varepsilon$-Caprolactam 의 음이온 중합 (제1보))

  • Jung Bal;Choi Sam-Kwon;Seo Gil Soo
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.6
    • /
    • pp.525-532
    • /
    • 1976
  • Anionic polymerization of 2-pyrrolidone and ${\varepsilon}$-Caprolactam via $CO_2/KOH catalysis was attempted in order to find reaction condition and physical properties of polymers. In case of polymerization of 2-pyrrolidone, the yield of conversion was increased when the concentration of potassium hydroxide was reached above 8 mole percent. The optimum of CO_2/KOH$ mole ratio was 0.45. It was also found that the polymerization was taking place at moderate temperature which was around $50^{\circ}C$. With regard to polymerization of-caprolactam, the yield of conversion was relatively low at $80^{\circ}C$ to $90^{\circ}C$and higher yield of conversion was obtained at higher temperature between $150^{\circ}C$ to $180^{\circ}C$ regardless of $CO_2/KOH mole ratio. The inherent viscosity of nylon 4 and nylon 6 which was made via CO_2/KOH$ catalysis was measured. The observed inherent viscosity was between 2.0 to 5.0.

  • PDF

Reaction Characteristics of WGS Catalyst with Fraction of Catalyst in a Batch Type Fluidized Bed Reactor (회분식 유동층 반응기에서 촉매함량 변화에 따른 WGS 촉매의 반응특성)

  • Ryu, Ho-Jung;Hyun, Ju-Soo;Kim, Ha-Na;Hwang, Taek-Sung
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.4
    • /
    • pp.465-473
    • /
    • 2011
  • To find the optimum mixing ratio of WGS catalyst with $CO_2$ absorbent for SEWGS process, water gas shift reaction tests were carried out in a fluidized bed reactor using commercial WGS catalyst and sand (as a substitute for $CO_2$ absorbent). WGS catalyst content, gas velocity, and steam/CO ratio were considered as experimental variables. CO conversion increased as the catalyst content increased during water gas shift reaction. Variations of the CO conversion with the catalyst content were small at low gas velocity. However, those variations increased at higher gas velocity. Within experimental range of this study, the optimum operating condition(steam/CO ratio=3, gas velocity = 0.03 m/s, catalyst content=10 wt.%) to get high CO conversion and $CO_2$ capture efficiency was confirmed. Moreover, long time water gas shift reaction tests up to 20 hours were carried out for two cases (catalyst content = 10 and 20 wt.%) and we could conclude that the WGS reactivity at those conditions was maintained up to 20 hours.

Power Conversion System and Technical Trend of Fuel Cell Electric Vehicles (FCEV용 전력변환장치와 FCEV의 기술동향)

  • Choi U. D.;Min B. D.;Lee J. C.;Kim J. C.;Lee J. P.
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.593-597
    • /
    • 2002
  • The power conversion system for Fuel Cell Electric Vehicle(FCEV), technical trend, and a various type of Fuel Cell and its characteristics are presented. Especially, this paper is focused on the control methods of power conversion devices applied for the Fuel Cell Electric Vehicle, configuration of power system and operation mode of the bidirectional DC/DC converter. The prevalent topology for the power conversion systems, simulation results and development a tendency of FCEV and it's market investigations are introduced.

  • PDF

Effects of Y-Zeolite as a Support on CO, $CC_3H_6$ Oxidation for Diesel Emission Control (디젤엔진 배출가스 저감을 위한 CO, $C_3H_6$의 산화반응에서 Y-제올라이트 담체의 영향)

  • 김문찬
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.1
    • /
    • pp.91-98
    • /
    • 1997
  • Y-zeolite and ${\gamma}$-Al$_2$O$_3$ were used as supports on CO and $C_3$H$_{6}$ oxidation for diesel emission control. The catalysts composed of Pd and Pt as active components were wash coated on honeycomb type ceramic substrate. The oxidation of CO and $C_3$H$_{6}$ was carried out over prepared honeycomb in a fixed bed continuous reactor in the temperature range of 20$0^{\circ}C$~50$0^{\circ}C$ and 20,000 GHSV (h$^{-1}$ ). Surface area of Y-zeolite was larger than that of ${\gamma}$-Al$_2$O$_3$ due to channel structure of Y-zeolite. Therefore, high conversion of CO and $C_3$H$_{6}$ could be obtained because of good dispersion of active metals over Y-zeolite. The honeycomb used Y-zeolite as a support showed higher $C_3$H$_{6}$ conversion than that of ${\gamma}$-Al$_2$O$_3$ due to better cracking and isomerization activity of Y-zeolite. PdPt catalyst showed high conversion of CO and $C_3$H$_{6}$ at low temperature region, 20$0^{\circ}C$~30$0^{\circ}C$, for their synergy effects. PdPt/Y-Zeolite catalyst could achieve more than 80% conversion of $C_3$H$_{6}$ at 30$0^{\circ}C$. The use of Y-zeolite as a support increased CO and $C_3$H$_{6}$ conversion, and decreased SO$_2$ conversion very effectively. Y-zeolite found to have a good adaptability as a support for the diesel emission after treatment system.

  • PDF

Effects of Bed Insert Geometry and Shape of WGS Catalysts on CO Conversion in a Fluidized Bed Reactor for SEWGS Process (SEWGS 공정을 위한 유동층 반응기에서 내부 삽입물의 모양 및 WGS 촉매의 형상이 CO 전환율에 미치는 영향)

  • Ryu, Hojung;Kim, Hana;Lee, Dongho;Bae, Dalhee;Hwang, Taeksung
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.2
    • /
    • pp.150-159
    • /
    • 2013
  • To enhance the performance of SEWGS system by holding the WGS catalyst in a SEWGS reactor using bed inserts, effects of insert geometry and shape of WGS catalysts on CO conversion were measured and investigated. Small scale fluidized bed reactor was used as experimental apparatus and WGS catalyst (particle and tablet) and sand were used as bed materials. The parallel wall type and cross type bed inserts were used to hold the WGS catalysts. The CO conversion with steam/CO ratio was determined based on the exit gas analysis. The measured CO conversion using the bed inserts showed high value comparable to physical mixing cases. Moreover, gas flow direction was confirmed by bed pressure drop measurement for each case. Most of input gas flowed through the catalyst side when we charged tablet type catalyst into the bed insert and this can cause low $CO_2$ capture efficiency because the possibility of contact between input gas and $CO_2$ absorbent is low in this case. New bed insert geometry was proposed based on the results from this study to enhance contact between input gas and WGS catalyst and $CO_2$ absorbent.

Effect of Bed Insert Geometry on CO Conversion of WGS Catalyst in a Fluidized Bed Reactor for SEWGS Process (SEWGS 공정을 위한 유동층 반응기에서 내부 삽입물의 모양이 WGS 촉매의 CO 전환율에 미치는 영향)

  • Ryu, Hojung;Kim, Hana;Lee, Dongho;Jin, Gyoungtae;Park, Youngcheol;Jo, Sungho
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.6
    • /
    • pp.535-542
    • /
    • 2013
  • To enhance the performance of SEWGS system by holding the WGS catalyst in a SEWGS reactor using bed inserts, effect of bed insert geometry on CO conversion of WGS catalyst was measured and investigated. Small scale fluidized bed reactor was used as experimental apparatus and tablet shaped WGS catalyst and sand particle were used as bed materials. The cylinder type and the spring type bed inserts were used to hold the WGS catalysts. The CO conversion of WGS catalyst with the change of steam/CO ratio was determined based on the exit gas analysis. Moreover, gas flow direction was confirmed by bed pressure drop measurement for each case. The measured CO conversion using the bed inserts showed high value comparable to previous results even though at low catalyst content. Most of input gas flowed through the bed center side when we charged tablet type catalyst into the cylinder type bed insert and this can cause low $CO_2$ capture efficiency because the possibility of contact between input gas and $CO_2$ absorbent is low in this case. However, the spring type bed insert showed good reactivity and good distribution of gas, and therefore, the spring type bed insert was selected as the best bed insert for SEWGS process.

Effects of $CO/CO_{2}$ Additives on The Reaction of Methane Activation using The Zeolite Catalyst (지오라이트 촉매를 이용한 메탄의 활성화 반응에서 일산화탄소/이산화탄소 첨가에 따른 영향)

  • Chung, Gui-Yung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.139-143
    • /
    • 2000
  • There appeared enhancements of the conversion of methane by adding a small amount of CO in the aromatization reaction of methane using the Mo-zeolite catalyst. In case of adding $CO_{2}$, $CO_{2}$ changed to CO first, and then the conversion reaction occurred. It was observed by using isotopes as reactants that CO is related to the aromatization reaction of methane.

Photocatalytic conversion of CO2 into hydrocarbon fuels with standard titania (Degussa P25) using newly installed experimental setup

  • Kim, Hye Rim;Razzaq, Abdul;Heo, Hyo Jung;In, Su-Il
    • Rapid Communication in Photoscience
    • /
    • v.2 no.2
    • /
    • pp.64-66
    • /
    • 2013
  • Photoreduction of $CO_2$ into hydrocarbon fuels on the surface of photocatalyst is one of the breakthroughs in the field of photocatalysis. At present various approaches have been investigated with the aim of increasing the $CO_2$ conversion efficiency. The reactor for photoconversion of $CO_2$ plays a vital role in experimental setup. In this work an attempt was made to testify a newly designed the photoreactor for conversion of $CO_2$ into useful products. The photoreactor was specifically designed for simple operation bearing features of temperature and pressure control. The reactor has been tested successively with the standard titania, Degussa P25 yielding methane with moderate production rate of 30.8 $ppm{\cdot}g^{-1}{\cdot}h^{-1}$ under UV lamp with 365 nm wavelength. The methane yield obtained is comparable to the values reported in literature. Thus we anticipate that this experimental setup equipped with newly designed photoreactor can yield competitive amounts of fuels from $CO_2$ photoredcution via 365 nm UV light illumination on various photocatalysts.

A Study on the Synthesis of CH4 from CO2 of Biogas Using 40 wt% Ni-Mg Catalyst: Characteristic Comparison of Commercial Catalyst and 40 wt% Ni Catalyt (40 wt% Ni 촉매에서 바이오가스 중 CO2로부터 메탄제조에 관한 연구: Commercial Catalyst와의 특성 비교분석)

  • HAN, DANBEE;BAEK, YOUNGSOON
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.5
    • /
    • pp.388-400
    • /
    • 2021
  • Power to gas (P2G) is one of the energy storage technologies that can increase the storage period and storage capacity compared to the existing battery type. One of P2G technology produces hydrogen by decomposing water from renewable energy (electricity) and the other produces CH4 by reacting hydrogen with CO2. This study is an experimental study to produce CH4 by reacting CO2 of biogas with hydrogen using a 40 wt% Ni-Mg-Al catalyst and a commercial catalyst. Catalyst characteristics were analyzed through H2-TPR, XRD, and XPS instruments of 40% Ni catalyst and commercial catalyst. The effect on the CO2 conversion rate and CH4 selectivity was analyzed, and the activities of a 40% Ni catalyst and a commercial catalyst were compared. As a result of experiment, In the case of a 40 wt% catalyst, the maximum CO2 conversion rate showed 77% at the reaction temperature of 400℃. Meanwhile, the commercial catalyst showed a maximum CO2 conversion rate of 60% at 450℃. When 50% of CO was added to the CO2 methanation reaction, the CO2 conversion rate was increased by about 5%. This is considered to be due to the atmosphere in which the CO reaction can occur without the process of converting to CH4 after forming carbon and CO as intermediates in terms of the CO2 mechanism on the catalyst surface.