• Title/Summary/Keyword: CO adsorption

Search Result 915, Processing Time 0.028 seconds

Influence of Nitrogen moieties on CO2 capture of Carbon Aerogel

  • Jeon, Da-Hee;Min, Byung-Gak;Oh, Jong Gab;Nah, Changwoon;Park, Soo-Jin
    • Carbon letters
    • /
    • v.16 no.1
    • /
    • pp.57-61
    • /
    • 2015
  • Carbon aerogel is a porous carbon material possessing high porosity and high specific surface area. Nitrogen doping reduced the specific surface area and micropores, but it furnished basic sites to improve the $CO_2$ selectivity. In this work, N-doped carbon aerogels were prepared with different ratios of resorcinol/melamine by using the sol-gel method. The morphological properties were characterized by scanning electron microscopy (SEM). Nitrogen content was studied by X-ray photoelectron spectroscopy (XPS) and the specific surface area and micropore volume were analyzed by $N_2$ adsorption-desorption isotherms at 77 K. The $CO_2$ adsorption capacity was investigated by $CO_2$ adsorption-desorption isotherms at 298 K and 1 bar. Melamine containing N-doped CAs showed a high nitrogen content (5.54 wt.%). The prepared N-doped CAs exhibited a high $CO_2$ capture capacity of 118.77 mg/g (at resorcinol/melamine = 1:0.3). Therefore, we confirmed that the $CO_2$ adsorption capacity was strongly affected by the nitrogen moieties.

Synthesis and Adsorption Characteristics of Guanidine-based CO2 Adsorbent (Guanidine기반 이산화탄소 건식 흡착제 합성 및 흡착 특성)

  • Pacia, Rose Mardie;Pyo, Seong Won;Ko, Young Soo
    • Applied Chemistry for Engineering
    • /
    • v.28 no.4
    • /
    • pp.473-478
    • /
    • 2017
  • In this study, the guanidine compound, 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) was impregnated to three kinds of silica to prepare $CO_2$ adsorbents, and the $CO_2$ adsorption and physicochemical properties of the resulting adsorbents were investigated. The TBD amount of impregnation was changed and its effect on adsorption capacity and characteristics were studied. The physicochemical properties of TBD-impregnated silica were evaluated with $N_2$ adsorption/desorption, FT-IR, elemental analysis, and thermogravimetric analysis. The TBD-impregnated silica lowered the surface area and pore volume, and the increased impregnation amount of TBD made them further decrease. When TBD was 6 mmol/g, the $CO_2$ adsorption capacity was the highest at 7.3 wt%, and the adsorption capacity decreased due to the blocking phenomenon when the TBD amount increased.

Effect of Heat Treatment on CO2 Adsorption of Ammonized Graphite Nanofibers

  • Meng, Long-Yue;Cho, Ki-Sook;Park, Soo-Jin
    • Carbon letters
    • /
    • v.11 no.1
    • /
    • pp.34-37
    • /
    • 2010
  • In this work, graphite nanofibers (GNFs) were prepared by ammonia and heat treatment at temperatures up to $1000^{\circ}C$ to improve its $CO_2$ adsorption capacity. The effects of the heat treatment on the textural properties and surface chemistry of the GNFs were investigated by $N_2$ adsorption isotherms, XRD, and elemental analysis. We found that the chemical properties of GNFs were significantly changed after the ammonia treatment. Mainly amine groups were formed on the GNF surfaces such as lactam groups, pyrrole and pyridines. The GNFs treated at $500^{\circ}C$ showed highest $CO_2$ adsorption capacity of 26.9 mg/g at 273 K in this system.

($H_{2}S$ Adsorption Capacity of $Na_{2}CO_{3}$ and $KIO_{3}$ Impregnated Activated Carbon (($Na_{2}CO_{3}$$KIO_{3}$ 첨착 왕겨활성탄의 $H_{2}S$ 흡착특성)

  • Kim, Jun-Suk;Kim, Myung-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.213-221
    • /
    • 2002
  • Activated carbons with high surface area of 2,600 $m^{2}/g$ and high pore volume of 1.2 cc/g could be prepared by KOH activation of rice hulls at a KOH:char ratio of 4:1 and $850^{\circ}C$. In order to increase the adsorption capacity of hydrogen sulfide, which is one of the major malodorous component in the waste water treatment process, various contents of $Na_{2}CO_{3}$ and $KIO_{3}$ were impregnated to the rice-hull activated carbon. The impregnated activated carbon with 5 wt.% of $Na_{2}CO_{3}$ showed improved $H_{2}S$ adsorption capacity of 75 mg/g which is twice of that for the activated carbon without impregnation and the impregnated activated carbon with 2.4 wt.% of $KIO_{3}$ showed even higher $H_{2}S$ adsorption capacity of 97 mg/g. The improvement of $H_{2}S$ adsorption capacity by the introduction of those chemicals could be due to the $H_{2}S$ oxidation and chemical reaction with impregnated materials in addition to the physical adsorption of activated carbon.

Thermostable Adsorption Filter Immobilized with Super Activated Carbons by Quinoline Soluble Isotropic Pitch Binder (I-a Novel Adsorption Filter)

  • Park, Yeong-Tae;Im, Chul-Gyou;Kim, Yeong-Tae;Rhee, Bo-Sung
    • Carbon letters
    • /
    • v.10 no.3
    • /
    • pp.198-201
    • /
    • 2009
  • Among other filters such as light filter, wave filter, air filter, ultra filter and filter paper, a novel adsorption filter from thermostable polyester nonwoven fabrics immobilized with functional super activated carbon by means of quinoline soluble, activateable isotropic pitch binder were developed in this study. The activated carbon precursor is available in the market branded as coconut shell based activated carbon(CCS-AC) produced by Dongyang Carbon Co. Ltd. BET-surface area of this precursor was $1,355\;m^2/g$, after KOH-activation it increased over $2,970\;m^2/g$ and was named as super activated carbon. In the preliminary research, this precursor was impregnated with $PdCl_2$(0.188 wt%) $KMnO_4$(3 wt%) and redox-agent(CuCl2, 0.577 wt%) in order to promote TOF up to 100/h and Selectivity up 99% and patented as a functional AC for the ethylene adsorption. The enhancement of the isotropic pitch binder to the AC-immobilized adsorption filter was BET-surface area upgraded by $266\;m^2/g$ and promoted the Iodine- and MB-adsorption by 1.4 times, respectively and also micro pore wide ranges < $5{\AA}{\sim}30\;{\AA}$ >.

Ambient Adsorption of Low-level Carbon Dioxide by Metal Treated Activated Carbon (양이온 함침 활성탄에서의 저농도 이산화탄소 상온 흡착특성)

  • Lee, Kyung-Mi;Jo, Young-Min
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.4
    • /
    • pp.316-324
    • /
    • 2009
  • Carbon based sorbents for $CO_2$ adsorption were prepared by impregnation with alkali metals ($Li^+$, $K^+$) and alkaline earth metals ($Ca^{2+}$, $Mg^{2+}$). BET surface area of test sorbents was lower than the intrinsic activated carbon. In particular, impregnation of $Ca^{2+}$ or $Mg^{2+}$ resulted in lower surface area of specific adsorption sites than that of $Li^+$ or $K^+$. While the adsorption capacity for $CO_2$ was high in the sorbents containing $Ca^{2+}$ and $Mg^{2+}$, strong interaction with $CO_2$ would cause to drop the capacity after regeneration. The adsorption was found high relatively in the flow with a high concentration of $CO_2$ and in a low flow rate. The adsorption isotherm for the present modified AC sorbents fits well with the Freundlich model.

Adsorption Characteristic of Carbon Dioxide on Activated Carbon Impregnated with Piperazine (Piperazine으로 함침된 활성탄의 이산화탄소 흡착 특성)

  • Choi, Sung-Woo
    • Journal of Environmental Science International
    • /
    • v.22 no.7
    • /
    • pp.847-853
    • /
    • 2013
  • Functionalized adsorbent has been synthesized by piperazine(Pz) on activated carbon. Quantitative estimations of $CO_2$ were undertaken using gas chromatography with GC/TCD and the prepared adsorbents were characterized by BET surface area and FT-IR. It was also studied effect of various parameters such as piperazine loadings and adsorption temperature. The specific surface area decreased from $1212.0m^2/g$ to $969.8m^2/g$ by impregnation and FT-IR revealed a N-H functional group at about $1400cm^{-1}$ to $1700cm^{-1}$. The $CO_2$ adsorption capacity at $20^{\circ}C$ and $50{\sim}100^{\circ}C$ was as follow: AC > Pz(10)-AC> Pz(30)-AC> Pz(50)-AC at $20^{\circ}C$ and Pz(10)-AC > AC > Pz(30)-AC> Pz(50)-AC at $50{\sim}100^{\circ}C$. Therefore, for high temperature flue gas condition, the Pz(10)-AC showed the highest adsorption capacity due to physical adsorption and chemical adsorption by amino-group content. The results suggest that activated carbon impregnated with Pz is an effective adsorbent for $CO_2$ capture from real flue gases above $50^{\circ}C$.

Enhancement of Efficiency of Activated Carbon Impregnated Chitosan for Carbon Dioxide Adsorption

  • Patkool, Chaiwat;Chawakitchareon, Petchporn;Anuwattana, Rewadee
    • Environmental Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.289-292
    • /
    • 2014
  • The effect of carbon dioxide ($CO_2$) on global warming is serious problem. The adsorption with solid sorbents is one of the most appropriate options. In this study, the most interesting adsorbent is granular activated carbon (GAC). It is suitable material for $CO_2$ adsorption because of its simple availability, many specific surface area, and low-cost material. Afterwards, GAC was impregnated with chitosan solution as impregnated granular activated carbon (CGAC) in order to improve the adsorption capacity of GAC. This research aims to compare the physical and chemical characteristics of GAC and CGAC. The experiment was carried out to evaluate the efficiency of $CO_2$ adsorption between GAC and CGAC. The results indicated that the iodine number of GAC and CGAC was 137.17 and 120.30 mg/g, respectively. The Brunauer-Emmett-Teller results (BET) of both GAC and CGAC show that specific surface area was 301.9 and $531.3m^2/g$, respectively; total pore volume was 0.16 and $0.29cm^3/g$, respectively; and mean diameter of pore was 2.18 and 2.15 nm, respectively. Finally, the $CO_2$ adsorption results of both GAC and CGAC in single column how the maximum adsorption capacity was 0.17 and 0.25 mol/kg, respectively; how degeneration time was 49.6 and 80.0 min, respectively; and how the highest efficiency of $CO_2$ adsorption was 91.92% and 91.19%, respectively.

A Study on the Fixed-bed Adsorption of Heavy Metal Ions over Chitosan Bead (키토산 비드에 의한 중금속 이온의 고정층 흡착에 관한 연구)

  • Chung, Kyong-Hwan
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.166-172
    • /
    • 1999
  • Fixed-bed adsorption of metal ions on chitosan bead was studied to remove heavy metal ions in waste water. Chitin was extracted from carb shell and chitosan was prepared by deacetylation of the chitin. The chitosan in bead was used as an adsorbent for heavy metal ions. Freundlich and Langmuir isotherm was determined from the experimental results of equilibrium adsorption for individual metal ion ($Cu^{2+}$, $Co^{2+}$, $Ni^{2+}$) on chitosan bead. Adsorption strength of metal ions decreased in the order of $Cu^{2+}$>$Co^{2+}$>$Ni^{2+}$ ion. Breakthrough curves of single and multicomponent adsorption for metal ions were obtained from the experimental results of fixed-bed adsorption. The breakthrough curves were analyzed by simulation with fixed-bed adsorption equation based on LDFA (linear driving force approximation) adopted LAS (ideal adsorbed solution) theory which can predict multi-component adsorption isotherm from individual adsorption isotherm. The behavior of fixed bed adsorption for single and multi-component system could be nicely simulated by the equation.

  • PDF

Effect of Carbon Dioxide Adsorption on LDPE/Zeolite 4A Composite Film

  • Jung, Bich Nam;Shim, Jin Kie;Hwang, Sung Wook
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.24 no.3
    • /
    • pp.149-157
    • /
    • 2018
  • Low density polyethylene (LDPE) has been researched in many industrial applications, and LDPE/zeolite 4A composites has been extensively studied for many applications such as microporous, breathable film and so on. LDPE/zeolite composite have a great potential for carbon dioxide adsorption film due to its high adsorption ability. In this study, LDPE/zeolite 4A composites with various contents were prepared by melt mixing process, and co-extrusion process was applied to develop a $CO_2$ adsorption conventional film and foamed film. The thermal, rheological, mechanical, physical and morphological properties of composite films has been characterized, and $CO_2$ adsorption of the composite films evaluated by thermogravimetric analysis (TGA) and the performance was found to be about 18 cc/g at 30.9 wt% of the zeolite content.