• Title/Summary/Keyword: CO2 adsorption

Search Result 191, Processing Time 0.027 seconds

Study on development of Smart ventilation system using a adsorbent for the removal of CO2 (CO2 제거용 흡착제를 이용한 스마트 환기시스템 개발 연구)

  • Shin, Jae-Ran;Moon, Sung-Ho;Kim, Jae-Kang;Choi, Jin-Sik;Lim, Yun-Hui;Park, Byung-Hyun;Lee, Ju-Yeol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.578-582
    • /
    • 2015
  • In this study, We evaluated the efficiency of the smart ventilation system being developed at the test-bed(KCL). Smart ventilation system improve the indoor air quality by absorbing carbon dioxide. It is reducing the infusion of outside air can be reduced to minimum energy consumption. To evaluate the energy savings and carbon dioxide removal efficiency. It was more effective when working with air conditioning and ventilation system at the same time.

Chemisorption and Oxidation of Methanol over V2O5 Catalyst - I. Chemisorptive Behaviors of CO and CH3OH - (V2O5 촉매상에서의 메탄올 흡탈착 및 산화반응 - I. CO와 CH3OH의 화학흡착 특성 -)

  • Kim, Eul-San;Choi, Ki-Hyouk;Lee, Ho-In
    • Applied Chemistry for Engineering
    • /
    • v.5 no.2
    • /
    • pp.189-198
    • /
    • 1994
  • The adsorptive behaviors of carbon monoxide and methanol over $V_2O_5$catalyst were studied by means of thermal desorptlon spectroscopy (TDS) under ultrahigh vacuum conditions. Carbon monoxide adsorbed on oxygen-deficient V sites as well as on V=O groups of the $V_2O_5$ surface. CO adsorbed on the V sites desorbed at 380 K while CO adsorbed on the V=O groups formed carbonate species with surface oxygen of $V_2O_5$ and desorbed as $CO_2$ resulting in the reduction of the surface of she $V_2O_5$catalyst. The amount of CO adsorbed in the form of carbonate species increased by both the pre- and post-adsorbed oxygen. The adsorptive behavior of methanol over the catalyst was studied by thermal desorption experiments of $CH_3OH$, HCHO, CO, and $H_2$ upon methanol adsorption at 298 K. The results showed that methanol was adsorbed dissociatively on the $V_2O_5$catalyst as methoxy and hydroxyl groups at 298K.

  • PDF

Adsorption Characteristics of Functionalized Activated Carbon for High Temperature CO2 Capture (고온 이산화탄소 포집을 위한 기능성 활성탄의 흡착특성)

  • Choi, Sung-Woo;Lee, Cheol-Gyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.3
    • /
    • pp.175-181
    • /
    • 2015
  • Activated carbon impregnated with polyethyleneimine (PEI) was evaluated as a functionalized adsorbent for $CO_2$ capture. The $CO_2$ adsorption characteristics of the adsorbents was undertaken using GC/TCD, BET surface area and FT-IR. A series of adsorbents were synthesized by impregnating 10, 30, 50 wt% of PEI on activated carbons and were investigated $CO_2$ adsorption capacity at high and low adsorption temperature. The $CO_2$ adsorption capacity at $20^{\circ}C$ and $100^{\circ}C$ was as follow: AC > PEI(10)-AC > PEI(30)-AC > PEI(50)-AC at $20^{\circ}C$ and PEI(10)-AC > PEI(30)-AC > PEI(50)-AC > AC at $100^{\circ}C$. Adsorption capacities of amine functionalized AC was lager than virgin AC at high temperature due to chemisorption by amino-group content. From the results, the PEI(10)-AC showed one of the most promising adsorbents for $CO_2$ capture from flue gas at high temperature.

Evaluation on Odor Removal Performance of Bacteria-Based Odor Reduction Kit for Revetment Blocks (호안블록용 박테리아 기반 악취저감 키트의 악취제거 성능평가)

  • Keun-Hyoek Yang;Ju-Hyun Mun;Ki-Tae Jeong;Hyun-Sub Yoon;Jae-Il Sim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.2
    • /
    • pp.229-238
    • /
    • 2024
  • This study evaluated the odor removal performance of a bacteria-based odor reduction kit. The bacteria used were Rhodobacter capsulatus, Paracoccus limosus, and Brevibacterium hankyongi, which can remove ammonia (NH3), hydrogen sulfide (H2S), total nitrogen (T-P), and total phosphorus (T-N), which are odor pollutants. The materials used were bacteria and porous aggregates (expanded vermiculite, zeolite beads, activated carbon), and the combination of the materials varied depending on the removal mechanism. Materials with a physical adsorption mechanism (zeolite beads and activated carbon) gradually slowed down the concentration reduction rate of odor pollutants (NH3, H2S, T-P, and T-N), and had no further effect on reducing the concentration of odor pollutants after 60 hours. Expanded vermiculite, in which bacteria that remove odors through a bio-adsorption mechanism were immobilized, had a continuous decrease in concentration, and the concentration of odor pollutants reached 0 ppm after 108 hours. As a result, the odor removal performance of materials with physical adsorption mechanisms in actual river water did not meet the odor emission standard required by the Ministry of Environment, while the expanded vermiculite immobilized with bacteria satisfied the odor emission permissible standard and achieved water quality grade 1.

Effects of Inorganic-organic Additives on CO2 Adsorption of Activated Carbon (활성탄의 이산화탄소 흡착에 미치는 유무기계 첨가제의 영향)

  • Jo, Dong-Hyun;Cho, Ki-Sook;Park, Cheong-Gi;Kim, Sung-Hyun
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.885-889
    • /
    • 2012
  • In this study, amine and metal oxide additives were investigated to improve $CO_2$ adsorption capacity of activated carbons (ACs). The characteristics of surface modified ACs were studied by X-ray photoelectron spectroscopy (XPS), $N_2$ adsorption, X-ray diffraction (XRD), and BET. Amine surface treatment decreased specific surface area and pore volume of ACs, but increased alkalinity by the incorporated nitrogen functional groups. Adsorption capacities of amine functionalized ACs was larger than original ACs, because basic group which can react with $CO_2$ was grafted on the ACs surface. Presence of copper oxides on ACs also enhances the carbon dioxide adsorption. The copper oxides could increase the adsorption rate of carbon dioxides due to the acid-base interaction (or electron acceptor-donor interaction). It was found that copper oxide loading was a promising method to improve the $CO_2$ adsorption capacity of ACs.

Theoretical Investigation for the Adsorption of Various Gases (COx, NOx, SOx) on the BN and AlN Sheets (N과 AlN 시트에 다양한 기체(COx, NOx, SOx)의 흡착에 관한 이론 연구)

  • Kim, Sung-Hyun;Kim, Baek-Jin;Shin, Chang-Ho;Kim, Seung-Joon
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.1
    • /
    • pp.16-24
    • /
    • 2017
  • The adsorption of various atmospheric harmful gases ($CO_x$, $NO_x$, $SO_x$) on graphene-like boron nitride(BN) and aluminum nitride(AlN) sheets was theoretically investigated using density functional theory (DFT) and MP2 methods. The structures were fully optimized at the $B3LYP/6-31G^{**}$ and $CAM-B3LYP/6-31G^{**}$ levels of theory and confirmed to be a local minimum by the calculation of the harmonic vibrational frequencies. The MP2 single-point binding energies were computed at the $CAM-B3LYP/6-31G^{**}$ optimized geometries. Also the zero-point vibrational energy (ZPVE) and 50%-basis set superposition error (BSSE) corrections were included. The adsorptions of gases on the BN sheet were predicted to be a physisorption process and the adsorptions of gases on the AlN sheet were predicted to be a physisorption process for $CO_x$ and $NO_x$ but to be a chemisorption process for $SO_x$.

Role of modified activated carbon by H3PO4 or K2CO3 from natural adsorbent for removal of Pb(II) from aqueous solutions

  • Manoochehri, Mahboobeh;Khorsand, Ameneh;Hashemi, Elham
    • Carbon letters
    • /
    • v.13 no.2
    • /
    • pp.115-120
    • /
    • 2012
  • Most heavy metals are well-known toxic and carcinogenic agents and when discharged into wastewater represent a serious threat to the human population and the fauna and flora of the receiving water bodies. The present study aims to develop a procedure for Pb(II) removal. The study was based on using powdered activated carbon, which was prepared from walnut shells generated as plant wastes and modified with potassium carbonate or phosphoric acid as chemical agents. The main parameters, such as effect of pH, effect of sorbent dosage, Pb(II) concentrations, and various contact times influence the sorption process. The experimental results were analyzed by using Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich adsorption models. The kinetic study of Pb(II) on activated carbon from walnut shells was performed based on pseudo-first order and pseudo-second order equations. The data indicate that the adsorption kinetics follow the pseudo-second order rate. The procedure was successfully applied for Pb(II) removal from aqueous solutions.

Sonochemical Synthesis of UiO-66 for CO2 Adsorption and Xylene Isomer Separation (초음파 합성법을 이용한 UiO-66의 합성 및 이산화탄소 흡착/자일렌 이성체 분리 연구)

  • Kim, Hee-Young;Kim, Se-Na;Kim, Jun;Ahn, Wha-Seung
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.470-475
    • /
    • 2013
  • Zr-benzendicarboxylate structure, UiO-66 was prepared in 1-L batch scale by using a unique sonochemical-solvothermal combined synthesis method. The produced UiO-66 showed uniform particles of ca. $0.2{\mu}m$ in size with the BET surface area of $1,375m^2/g$ in high product yield (>95%). The UiO-66 showed 198 and 84 mg/g $CO_2$ adsorption capacity at 273 K and 298 K, respectively, with excellent $CO_2$ selectivity ($CO_2:N_2=32:1$) at ambient conditions. The isosteric heat of $CO_2$ adsorption varied from 33 to 25 kJ/mol as the adsorption progressed. The UiO-66 tested for xylene isomer separation in a liquid-phase batch mode confirmed preferential adsorption of the adsorbent for o-xylene over m-, and p-xylene.

Impregnation of Nitrogen Functionalities on Activated Carbon Fiber Adsorbents for Low-level CO2 Capture (저농도 이산화탄소 포집용 활성탄소섬유 흡착제의 질소작용기 함침연구)

  • Hwang, Su-Hyun;Kim, Dong-Woo;Jung, Dong-Won;Jo, Young-Min
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.2
    • /
    • pp.176-183
    • /
    • 2016
  • Activated carbon fibers (ACFs) for $CO_2$ adsorption were prepared from polyacrylonitrile (PAN) fiber through the systematic processes such as oxidation, activation and amination with the focus on the formation of nitration functional groups. Textural analysis of test samples revealed the decrease of specific surface area and pore volume by chemical activation including amination. The ratio of micropores to the total volume was 0.85 to 0.91, which was high enough with the pore size of 1.57 to 1.77 nm. Nitrogen compounds such as imine, pyridine and pyrrole presenting favorable interforces to $CO_2$ molecules were formed throughout the whole preparation steps. The aminated ACF adsorbent showed the enhanced adsorption capacity, 0.40 mmol/g for low-level $CO_2$ flow (3000 ppm) at room temperature. Selectivity of $CO_2$ against dry air ($O_2$ & $N_2$) also increased from 1.00 to 4.66 by amination.

CO2 Adsorption in Metal-organic Frameworks (금속유기구조체를 이용한 이산화탄소 흡착 연구)

  • Kim, Jun;Kim, Hee-Young;Ahn, Wha-Seung
    • Korean Chemical Engineering Research
    • /
    • v.51 no.2
    • /
    • pp.171-180
    • /
    • 2013
  • Metal organic frameworks (MOFs) are a class of crystalline organic-inorganic hybrid compounds formed by coordination of metal clusters or ions with organic linkers. MOFs have recently attracted intense research interest due to their permanent porous structures, large surface areas and pore volume, high-dispersed metal species, and potential applications in gas adsorption, separation, and catalysis. $CO_2$ adsorption in MOFs has been investigated in two areas of $CO_2$ storage at high pressures and $CO_2$ adsorption at atmospheric pressure conditions. In this short review, $CO_2$ adsorption/separation results using MOFs conducted in our laboratory was explained in terms of four contributing effects; (1) coordinatively unsaturated open metal sites, (2) functionalization, (3) interpenetration/catenation, and (4) ion-exchange. Zeolitic imidazolate frameworks (ZIFs) and covalent organic frameworks (COFs) were also considered as a candidate material.