• Title/Summary/Keyword: CNT-

Search Result 1,319, Processing Time 0.03 seconds

A Study on the Fingerprint Identification and Scientific Crime Detection Using LED (LED를 이용한 지문감식 및 과학수사에 관한 연구(I))

  • Kim, Soon-Gi
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.97-99
    • /
    • 2008
  • 본 논문은 고출력 LED를 이용하여 대한민국 경찰청 및 지방경찰청 과학수사에 사용하는 지문감식을 위한 효과적인 휴대용 교광원에 관한 연구이다. 최근 광반도체(光半導體) 관련 형광물질 등 원천기술의 획기적인 R&D가 진행 중에 있다. 따라서 본 논문에서는 산업체는 물론 생활주변에 사용되는 핸드폰 백라이트, LED 평면광원, 가로등용 LED광원, 오징어잡이에 사용되는 집어용 LED, OLED, CNT 광원 등에 적용되는 기술을 광학적 논리를 근거로 하여 고고학에 적용되는 문화재, 미술품의 진품감정, 지문현출을 통한 지문감식 등에 적용하기 위한 연구이다. 미국 유럽 남미 등에서 개발하여 과학수사에 사용하고 있는 교광원은 기동성 및 휴대하기에 매우 무겁고 고가이다. 이러한 문제점을 해결하기 위해 LED 신광원 UV 파장을 이용하여 지문현출 및 지문감식 등에 적용하면 소형경량화가 가능하여 무게와 부피를 급감할 수 있으며, 휴대가 간편하여 기동성이 뛰어나고 신속정확하게 매우 효과적으로 감정 및 감식이 가능하여 그 기대 효과가 매우 우수하다. 이러한 장점을 조명공학 및 광학적 이론을 근거로 지속적인 연구개발을 추진하여 국산화된 세계적인 신제품 개발을 위해 타당성을 검토 고찰하였다.

  • PDF

Field Emission Display and Backlight for LCD using Printed Carbon Nanotubes

  • Kim, Yong-Churl;Jung, D.S.;Song, B.K.;Bae, M.J.;Kang, H.S.;Han, I.T.;Kim, Jong-Min;Choi, Y.C.;Hwang, M.I.;Kim, I.H.;Park, J.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.1045-1048
    • /
    • 2007
  • We mainly report recent progress in backlight unit (BLU) for liquid crystal display (LCD) using printed carbon nanotubes (CNTs) including top-gate and lateral gate structures. Lighting performances of CNTBLU and longevity of printed CNT emitters are intensively discussed. Selected issues related with field emission display (FED) using the same emitters also are presented.

  • PDF

Effect of Fe Catalyst on Growth of Carbon Nanotubes by thermal CVD

  • Yoon, Seung-Il;Heo, Sung-Taek;Kim, Sam-Soo;Lee, Yang-Kyu;Lee, Dong-Gu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.760-763
    • /
    • 2007
  • The properties of carbon nanotube obtained by thermal chemical vapor deposition (CVD) process were investigated as a function of ammonia $(NH_3)$ gas in hydrocarbon gas, Fe catalyst thickness, and growth temperature. Fe catalyst was prepared by DC magnetron sputter and pre-treated with ammonia gas. CNTs were then grown with ammonia-acetylene gas mixture by thermal CVD. The diameter of these CNTs shows a strong correlation with the gas rate, the catalyst film thickness and temperature. From our results, it was found that the factors of grown CNTs positively acted to improve CNT quality.

  • PDF

Thermal Properties of XLPE Insulatorl Nano Semiconducting Materials in Power Cable (전력케이블용 XLPE절연체/ 나노 반도전층 재료의 열적 특성)

  • Yang, Jong-Seok;Choi, Sung-Hun;Park, Jabg-Hyeon;Sung, Baek-Ryong;Lee, Jae-Hyeung;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.30-31
    • /
    • 2006
  • To improve the mean-life and the reliability of power cable, we have investigated specific heat (Cp). Specific-heat measurement temperature ranges of XLPE insulator were from $20[^{\circ}C]$ to $90[^{\circ}C]$, and the heating rate was $1[^{\circ}C/min]$. In case of semiconducting materials, the measurement temperature ranges of specific heat were from $20[^{\circ}C]$ to $60[^{\circ}C]$ and the heating rate was $1[^{\circ}C/min]$. From these experimental results, both specific heat were increased by heating rate because volume of materials was expanded according to rise in temperature. We could know that a small amount of CNT has a excellent thermal properties.

  • PDF

Frequency and critical fluid velocity analysis of pipes reinforced with FG-CNTs conveying internal flows

  • Ghaitani, M.;Majidian, A.
    • Wind and Structures
    • /
    • v.24 no.3
    • /
    • pp.267-285
    • /
    • 2017
  • This paper addresses vibration and instability of embedded functionally graded (FG)-carbon nanotubes (CNTs)-reinforced pipes conveying viscous fluid. The surrounding elastic medium is modeled by temperature-dependent orthotropic Pasternak medium. Flugge shell model is applied for mathematical modeling of structure. Based on energy method and Hamilton's principal, the motion equations are derived. Differential quadrature method (GDQM) is applied for obtaining the frequency and critical fluid velocity of system. The effects of different parameters such as volume percent of CNTs, elastic medium, boundary condition and geometrical parameters are discussed.

Dynamic buckling response of temperature-dependent functionally graded-carbon nanotubes-reinforced sandwich microplates considering structural damping

  • Shokravi, Maryam;Jalili, Nader
    • Smart Structures and Systems
    • /
    • v.20 no.5
    • /
    • pp.583-593
    • /
    • 2017
  • This research deals with the nonlocal temperature-dependent dynamic buckling analysis of embedded sandwich micro plates reinforced by functionally graded carbon nanotubes (FG-CNTs). The material properties of structure are assumed viscoelastic based on Kelvin-Voigt model. The effective material properties of structure are considered based on mixture rule. The elastic medium is simulated by orthotropic visco-Pasternak medium. The motion equations are derived applying Sinusoidal shear deformation theory (SSDT) in which the size effects are considered using Eringen's nonlocal theory. The differential quadrature (DQ) method in conjunction with the Bolotin's methods is applied for calculating resonance frequency and dynamic instability region (DIR) of structure. The effects of different parameters such as volume percent of CNTs, distribution type of CNTs, temperature, nonlocal parameter and structural damping on the dynamic instability of visco-system are shown. The results are compared with other published works in the literature. Results indicate that the CNTs have an important role in dynamic stability of structure and FGX distribution type is the better choice.

Double bonded Cooper-Naghdi micro sandwich cylindrical shells with porous core and CNTRC face sheets: Wave propagation solution

  • Yazdani, Raziye;Mohammadimehr, Mehdi
    • Computers and Concrete
    • /
    • v.24 no.6
    • /
    • pp.499-511
    • /
    • 2019
  • In this paper, wave propagation of double-bonded Cooper-Naghdi micro sandwich cylindrical shells with porous core and carbon nanotube reinforced composite (CNTRC) face sheets are investigated subjected to multi-physical loadings with temperature dependent material properties. The governing equations of motion are derived by Hamilton's principle. Then, the influences of various parameters such as wave number, CNT volume fraction, temperature change, Skempton coefficient, material length scale parameter, porosity coefficient on the phase velocity of double-bonded micro sandwich shell are taken into account. It is seen that by increasing of Skempton coefficient, the phase velocity decreases for higher wave number and the results become approximately the constant. Also, by increasing of the material length scale parameter, the cut of frequency increases, because the stiffness of micro structure increases. The obtained results for this article can be used to detect, locate and quantify crack.

Modeling and Simulation of Cantilevered Carbon-Nanotube Resonator with the Attached Mass (부착 질량을 가지는 탐침 탄소-나노튜브 공진기의 모델링 및 시뮬레이션)

  • Choi, Tae Ho;Lee, Jun Ha;Kim, Tae-Eun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.2
    • /
    • pp.81-84
    • /
    • 2012
  • Cantilevered carbon-nanotube-resonator was investigated via classical molecular dynamics simulations. The resonator system is including the attached nanocluster. A nanocluster with a finite length was modeling by some atomic rings. The mass of the nanocluster was equally distributed on the carbon atoms, composed of the atomic rings. The effective density factor, which could be considered as the single parameter affecting the resonance frequency shift, was significantly influenced by the mass, the position, and the linear density of the attached nanocluster. The linear density of the attached nanocluster was an important parameter to analyze the vibrational behavior of the CNT-resonator, including the attached nanocluster.

Characteristics of Hybrid-type Transparent Electrodes Fabricated by Coating Carbon Nanotubes with Conductive Polymers (탄소나노튜브 위에 전도성 고분자가 코팅된 하이브리드형 투명전극의 특성)

  • Park, Jin-Seok;Park, Jong-Seol;Kim, Bu-Jong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.3
    • /
    • pp.36-41
    • /
    • 2019
  • Hybrid-type transparent electrodes were fabricated by depositing carbon nanotubes (CNTs) via spray coating on polyethylene terephthalate (PET) substrates and then coating the CNTs with [poly(3,4-ethylenedioxythiophene)] (PEDOT) films via electro-polymerization. For all of the fabricated electrodes, their surface morphologies, electric sheet resistances, visible transmittances, and color properties (e.g., yellowness) were characterized as functions of the applied voltages and process times used in electro-polymerization. The sheet resistance of the CNTs was significantly reduced by the coating of PEDOT, while their visible transmittances slightly decreased. The yellowness values of the PEDOT-coated CNTs were observed to have substantially decreased via electro-polymerization. The experimental results confirmed that the fabricated hybrid electrodes had desirable properties for the application of transparent electrode in terms of the electrical resistance, optical transmittance, and chromaticity.

Modeling of an embedded carbon nanotube based composite strain sensor

  • Boehle, M.;Pianca, P.;Lafdi, K.;Chinesta, F.
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.3
    • /
    • pp.263-273
    • /
    • 2015
  • Carbon nanotube strain sensors, or so called "fuzzy fiber" sensors have not yet been studied sufficiently. These sensors are composed of a bundle of fiberglass fibers coated with CNT through a thermal chemical vapor deposition process. The characteristics of these fuzzy fiber sensors differ from a conventional nanocomposite in that the CNTs are anchored to a substrate fiber and the CNTs have a preferential orientation due to this bonding to the substrate fiber. A numerical model was constructed to predict the strain response of a composite with embedded fuzzy fiber sensors in order to compare result with the experimental results obtained in an earlier study. A comparison of the numerical and experimental responses was conducted based on this work. The longitudinal sensor output from the model matches nearly perfectly with the experimental results. The transverse and off-axis tests follow the correct trends; however the magnitude of the output does not match well with the experimental data. An explanation of the disparity is proposed based on microstructural interactions between individual nanotubes within the sensor.