• Title/Summary/Keyword: CNT-

Search Result 1,319, Processing Time 0.029 seconds

Sensing performances of Semiconducting Carbon Nanomaterials based Gas Sensors Operating at Room Temperature (반도체 탄소 나노재료 기반 상온 동작용 가스센서)

  • Choi, Sun-Woo
    • Ceramist
    • /
    • v.22 no.1
    • /
    • pp.96-106
    • /
    • 2019
  • Semiconducting carbon-based nanomaterials including single-walled carbon nanotubes(SWCNTs), multi-walled CNT(MWCNTs), graphene(GR), graphene oxide(GO), and reduced graphene oxide(RGO), are very promising sensing materials due to their large surface area, high conductivity, and ability to operate at room temperature. Despite of these advantages, the semiconducting carbon-based nanomaterials intrinsically possess crucial disadvantages compared with semiconducting metal oxide nanomaterials, such as relatively low gas response, irreversible recovery, and poor selectivity. Therefore, in this paper, we introduce a variety of strategies to overcome these disadvantages and investigate principle parameters to improve gas sensing performances.

Synthesis and Microstructure of Single-Walled Carbon Nanotubes by Catalytic Chemical Vapor Deposition Method (촉매화학기상증착법에 의한 단일벽 탄소나노튜브의 합성과 미세구조)

  • Kim, Jong-Sik;Kim, Gwan-Ha;Kim, Chang-Il
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.7
    • /
    • pp.359-363
    • /
    • 2006
  • Single-walled carbon nanotubes (SWCNTs) with few defects and very small amount of amorphous carbon coating have been synthesized by catalytic decomposition of methane in $H_2$ over well-dispersed metal particles supported on MgO. The yield of SWCNTs was estimated to be 88.5% and the purities of SWCNTs thus obtained were more than 90%. Peak of the radial breathing mode in the Raman spectrum demonstrated that the diameters of synthesized CNTs are in the range 0.4-2.0 nm. Our results also indicated that MgO support materials are useful to a large-scale synthesis of high-quality SWCNTs. Increasing temperature could remarkably increase the yield and also improve the quality of SWCNTs from catalytic decomposition of methane. The morphologies and microstructures of the synthesized carbon materials were characterized by scanning electron microscopy (SEM), Thermogravimetric analysis (TGA), Raman spectroscopy, and X-ray diffraction (XRD).

Simulation of the Strip Type CNT Field Emitter Triode Structure (띠 모양의 에미터를 가지는 탄소나노튜브 삼전극 전계방출 디스플레이 소자의 시뮬레이션)

  • 류성룡;이태동;김영길;변창우;박종원;고성우;천현태;고남제
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.11
    • /
    • pp.1023-1028
    • /
    • 2003
  • The field emission characteristics are studied by simulation for carbon nanotube triode structures with a strip-shaped emitter and a gate hole aligned with it. Two structures, one with double-edge and the other with single edge are analyzed. They show good emission characteristics. Emissions of electrons are concentrated on the edges of emitter and the emitted current increases as the distance between emitter and gate decreases. For single-edged emitter, the emitted electrons form a narow strip-shaped beam which has a good directionality. These triode structures have advantages in that they can be easily fabricated and aligned for assembly.

A Review on Thermal Conductivity of Polymer Composites Using Carbon-Based Fillers : Carbon Nanotubes and Carbon Fibers

  • Hong, Jin-Ho;Park, Dong-Wha;Shim, Sang-Eun
    • Carbon letters
    • /
    • v.11 no.4
    • /
    • pp.347-356
    • /
    • 2010
  • Recently, the use of thermal conductive polymeric composites is growing up, where the polymers filled with the thermally conductive fillers effectively dissipate heat generated from electronic components. Therefore, the management of heat is directly related to the lifetime of electronic devices. For the purpose of the improvement of thermal conductivity of composites, fillers with excellent thermally conductive behavior are commonly used. Thermally conductive particles filled polymer composites have advantages due to their easy processibility, low cost, and durability to the corrosion. Especially, carbon-based 1-dimensional nanomaterials such as carbon nanotube (CNT) and carbon nanofiber (CNF) have gained much attention for their excellent thermal conductivity, corrosion resistance and low thermal expansion coefficient than the metals. This paper aims to review the research trends in the improvement of thermal conductivity of the carbon-based materials filled polymer composites.

Wireless Graphene Oxide-CNT Bilayer Actuator Controlled with Electromagnetic Wave (전자기웨이브에 의해 제어되는 무선형 그래핀-카본나노튜브 액츄에이터)

  • Xu, Liang;Oh, Il-Kwon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.282-284
    • /
    • 2011
  • Based on graphene oxide and multi-walled carbon nanotube layers, a wireless bi-layer actuator that can be remotely controlled with an electromagnetic induction system has been developed. The graphene-based bi-layer actuator exhibits a large one-way bending deformation under eddy current stimuli due to asymmetrical responses originating from the temperature difference of the two different carbon layers. In order to validate one-way bending actuation, the coefficients of thermal expansion of carbon nanotube and graphene oxide are mathematically formulated in this study based on the atomic bonding energy related to the bonding length. The newly designed graphene-based bi-layer actuator is highly sensitive to electromagnetic wave irradiation thus it can trigger a new actuation mode for the realization of remotely controllable actuators and is expected to have potential applications in various wireless systems.

  • PDF

Nano-scale Observation of Nanomaterials and Nano-devices

  • An, Chi-Won
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.86.1-86.1
    • /
    • 2012
  • 나노재료와 나노기술의 연구개발 지원을 위하여 국가나노인프라인 나노종합팹센터에서 개발되고 있는 나노재료/나노현상의 실시간 관찰을 위한 SiN membrane chip 기술 및 나노그래핀 기반구축에 대한 최근 결과와 향후계획을 소개하고자 한다. 나노재료의 합성, 배열, 구조 등의 실시간 관찰을 가능하게 하기 위하여 제작된SiN membrane chip은 투과전자현미경(transmission electron microscope, TEM)에서 투명한 기판으로, 그 위에 나노재료를 합성, 배열하고 원하는 모양의 전극을 형성하여 나노재료 및 나노소자의 온도변화 및 전기적 특성 측정 등이 가능하다. 이러한 기술은 Ag, Sn, Cu 등 nano-cluster의 percolation 소자, SiN 및 Graphene 나노기공 소자, SiGe, BiTe, Si, ZnO 나노선 및 CNT의 내부구조변화, 상변화 등 다양한 나노재료/나노소자의 나노현상 관찰 및 해석에 적용되었다.

  • PDF

Molecular Dynamics Study on the Behavior of a Carbon Nanotube (분자동역학을 이용한 탄소나노튜브의 거동 연구)

  • Huh, J.;Huh, H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.348-351
    • /
    • 2007
  • Simulations of the buckling behavior of a single wall carbon nanotube(SWCNT) was carried out using molecular dynamics simulation. Molecular dynamics simulations were done with 1fs of time step. Tersoff's potential function was used as the interatomic potential function since it has been proved to be reliable to describe the C-C bonds in carbon nanotubes. Compressive force was applied by moving the top end of the nanotube at a constant velocity. Buckling behavior under compressive load was observed for (15,15) armchair SWCNTs with 2nm of diameter and 24.9nm of length. Buckling load and critical strain is obtained from the MD simulation. Deformation occurred on the top region of the CNT because of fast downward velocity.

  • PDF

Flexible ZnO Nanogenerator의 내구성 개선을 통한 효율 향상 연구

  • Gang, Mul-Gyeol;Kim, Seong-Hyeon;Kim, Seon-Min;Jo, Jin-U;Lee, Cheol-Seung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.606-606
    • /
    • 2013
  • ZnO nanowire를 기반으로 하는 nanogenerator는 미세한 움직임을 전기 에너지로 변환 시키는 압전 에너지 하베스팅 기술로 기존 에너지 하베스터와 비교하여 사용환경의 제약이 적고, 소형화가 가능한 장점으로 주목을 받고 있다. 특히 혈류, 심장박동, 호흡 등 인체 활동 에너지를 이용한 발전 소자 등의 활용이 가능하여 활발한 연구가 진행되고 있다. 하지만, 최근 발표된 film like generator나 lateral 구조의 nanogenerator는 nanowire의 구조 취약성으로 인해 내구성이 좋지 못한 단점이 있다. 본 연구에서는 nanogenerator의 내구성을 향상시키기 위해 capping layer로 실리콘 계 유무기 하이브리드를 적용하고자 하였다. 또한 상부 전극을 CNT-Ag소재로 대체하여 유연기판에 대응코자 하였다. 코팅 물질 및 코팅 방법을 최적화하고, 내구성 테스트를 실시하였고, 소자의 발전 특성은 PVDF generator와 비교분석하였다.

  • PDF

Synthesis of Carbon Nanotubes from Catalytic Decomposition of C2H2 through Pd/Al2O3 Catalysts

  • Han, Ju-Tack;Woo, Ja-Hee;Kim, Hae-Sic;Jee, Jong-Gi
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.12
    • /
    • pp.1771-1774
    • /
    • 2003
  • CNTs have been synthesized by catalytic $C_2H_2$ decomposition through $Pd/Al_2O_3$ at low temperature. The CNTs were grown to a length of about 10 ${\mu}$m and diameter 150-200 nm with multiwalled structure. Pd catalysts have two major roles; one is the active catalyst for $C_2H_2$ decomposition, the other is a nucleation site of CNT's growth.

The Preparation of Multi-walled CNT-PMMA Nanocomposite

  • Seo, D.W.;Yoon, W.J.;Park, S.J.;Jo, M.C.;Kim, J.S.
    • Carbon letters
    • /
    • v.7 no.4
    • /
    • pp.266-270
    • /
    • 2006
  • Multi-walled carbon nanotube-poly methyl methacrylate (MWNT/PMMA) nanocomposite has been prepared by in situ polymerization of MMA dispersed with MWNTs. The MWNTs were functionalized by nitric acid and sulfuric acid treatment, and this was confirmed by FTIR spectrometer. The solution mixture of MWNTs and MMA was partially polymerized at $80^{\circ}C$, followed by the addition of AIBN and polymerization at $50^{\circ}C$. The MWNT-PMMA composite was prepared by casting the pre-polymer on the glass plate, and the optical properties have been studied using UV-vis spectrometer. The acid treated MWNTs were well dispersed in MMA with fairly good dispersion stability, while flocculation and sedimentation was observed from raw MWNTs in MMA.

  • PDF