• Title/Summary/Keyword: CNT toxicity

Search Result 6, Processing Time 0.021 seconds

Viable Alternatives to in vivo Tests for Evaluating the Toxicity of Engineered Carbon Nanotubes

  • Kwon, Soon-Jo;Eo, Soo-Mi
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • Carbon nanotubes (CNTs) stand at the frontier of nanotechnology and are destined to stimulate the next industrial revolution. Rapid increase in their production and use in the technology industry have led to concerns over the effects of CNT on human health and the environment. The prominent use of CNTs in biomedical applications also increases the possibility of human exposure, while properties such as their high aspect ratio (fiber-like shape) and large surface area raise safety concerns for human health if exposure does occur. It is crucial to develop viable alternatives to in vivo tests in order to evaluate the toxicity of engineered CNTs and develop validated experimental models capable of identifying CNTs' toxic effects and predicting their level of toxicity in the human respiratory system. Human lung epithelial cells serve as a barrier at the interface between the surrounding air and lung tissues in response to exogenous particles such as air-pollutants, including CNTs. Monolayer culture of the key individual cell types has provided abundant fundamental information on the response of these cells to external perturbations. However, such systems are limited by the absence of cell-cell interactions and their dynamic nature, which are both present in vivo. In this review, we suggested two viable alternatives to in vivo tests to evaluate the health risk of human exposure to CNTs.

Electrochemical Characteristics of CNT/TiO2 Nanocomposites Electrodes for Cancer Cell Sensor (바이오 센서용 CNT/TiO2 나노 복합 전극의 전기화학적 특성)

  • Kim, Han-Joo;You, Sun-Kyung;Oh, Mi-Hyun;Shen, Qin;Wang, Xuemei;Park, Soo-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.2
    • /
    • pp.105-108
    • /
    • 2008
  • In the recent years, increasing interests are being focused on the rational functionalization of the CNTs by some creative methods. However, the considerable toxicity of CNT is still a controversialissue and limits its biological application. To improve the biocompatibility of CNT, in this work we prepared CNT-$TiO_2$ nanocomposites with CNT and organic titanium precursors. Our observations demonstratethat the modified interface could accelerate the heterogeneous electron transfer rates and thusenhance the relevant detection sensitivity, suggesting its potential application as the new strategy for the development of the biocompatible and multi-signal responsive biosensors for the early diagnosis of cancers.

Synthesis of Si-CNT-C Composites and Their Application to Lithium Ion Battery (실리콘-탄소나노튜브-탄소 복합체 제조 및 리튬이온전지 응용)

  • Kim, Chan Mi;Kim, Sun Kyung;Chang, Hankwon;Kil, Dae sup;Jang, Hee Dong
    • Korean Chemical Engineering Research
    • /
    • v.56 no.1
    • /
    • pp.42-48
    • /
    • 2018
  • Silicon has attracted extensive attention due to its high theoretical capacity, low discharge potential and non-toxicity as anode material for lithium ion batteries. In this study, Si-CNT-C composites were fabricated for use as a high-efficiency anode material in a lithium ion battery. Aerosol self-assembly and post-heat treatment processes were employed to fabricate the composites. The morphology of the Si-CNT-C composites was spherical and an average particle size was $2.72{\mu}m$. The size of the composite increased as concentration of Si and CNT increased in the precursor solution. In the Si-CNT-C composites, CNT and C carbonized from glucose were attached to the surface of Si particles. Electrochemical measurement showed that the cycle performance of Si-CNT-C composites was better than that of silicon particles.

Characteristics of Workers' Exposure to Aerosolized Particles during the Production of Carbon Nanotube-enabled Composites (탄소나노튜브 복합체 취급 작업자의 공기 중 입자상 물질 노출 특성)

  • Kwon, Jiwoon;Kim, Sungho;Jang, Miyeon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • Objectives: The purpose of this case study is to assess workers' exposure to carbon nanotubes(CNTs) and characterize particles aerosolized during the process of producing CNT-enabled polytetrafuoroethylene(PTFE) composites at a worksite in Korea. Methods: Personal breathing zone and area samples were collected for determining respirable concentrations of elemental carbon(EC) using NIOSH(National Institute for Occupational Safety and Health) Method 5040. Personal exposure to nano-sized particles was measured as the number concentration and mean diameter using personal ultrafine particle monitors. The number concentration by particle size was measured using optical particle sizers(OPS) and scanning mobility particle sizers(SMPS). Transmission electron microscopy (TEM) area samples were collected on TEM grids and analyzed to characterize the size, morphology, and chemistry of the particles. Results: Respirable EC concentrations ranged from 0.04 to 0.24 ㎍/㎥, which were below 23% of the exposure limit recommended by NIOSH and lower than background concentrations. Number concentrations by particle size measured using OPS and SMPS were not noticeably elevated during CNT-PTFE composite work. Instant increase of number concentrations of nano-sized particles was observed during manual sanding of CNT-PTFE composites. Both number concentrations and mean diameters did not show a statistically significant difference between workers handing CNT-added and not-added materials. TEM analyses revealed the emission of free-standing CNTs and CNT-PTFE aggregate particles from the powder supply task and composite particles embedded with CNTs from the computer numerical control(CNC) machining task with more than tens of micrometers in diameter. No free-standing CNT particles were observed from the CNC machining task. Conclusions: Significant worker exposure to respirable CNTs was not found, but the aerosolization of CNTs and CNT-embedded composite particles were observed during handing of CNT-PTFE powders and CNC machining of CNT-PTFE composites. Considering the limited knowledge on the toxicity of CNTs and CNT composite particles to date, it seems prudent to take a precautionary approach for the protection of workers' health.

Estimation of an Occupational Exposure Limit for Multi-Walled Carbon Nanotubes Manufactured in Korea (국내 일부 다중벽탄소나노튜브의 직업노출기준 추정)

  • Kim, Jong Bum;Kim, Kyung Hwan;Choi, Byung-Gil;Song, Kyung Seuk;Bae, Gwi-Nam
    • Journal of Environmental Science International
    • /
    • v.25 no.4
    • /
    • pp.505-516
    • /
    • 2016
  • With the development of nanotechnology, nanomaterials are used in various fields. Therefore, the interest regarding the safety of nanomaterial use is increasing and much effort is diverted toward establishment of exposure assessment and management methods. Occupational exposure limits (OELs) are effectively used to protect the health of workers in various industrial workplaces. This study aimed to propose an OEL for domestic multi-walled carbon nanotubes (MWCNTs) based on animal inhalation toxicity test. Basic procedure for development of OELs was examined. For OEL estimation, epidemiological study and quantitative risk assessment are generally performed based on toxicity data. In addition, inhalation toxicity data-based no observed adverse effect level (NOAEL) and benchmark dose (BMD) are estimated to obtain the OEL. Three different estimation processes (NEDO in Japan, NIOSH in USA, and Baytubes in Germany) of OELs for carbon nanotubes (CNTs) were intensively reviewed. From the rat inhalation toxicity test for MWCNTs manufactured in Korea, a NOAEL of $0.98mg/m^3$ was derived. Using the simple equation for estimation of OEL suggested by NEDO, the OEL of $142{\mu}g/m^3$ was estimated for the MWCNT manufacturing workplace. Here, we used test rat and Korean human data and adopted 36 as an uncertainty factor. The OEL for MWCNT estimated in this work is higher than those ($2-80{\mu}g/m^3$) suggested by previous investigators. It may be greatly caused by different physicochemical properties of MWCNT and their dispersion method and test rat data. For setting of regulatory OELs in CNT workplaces, further epidemiological studies in addition to animal studies are needed. More advanced technical methods such as CNT dispersion in air and liquid should be also developed.

Toxicity Analysis of Carbon Nanotubes Based on Their Physicochemical Properties (서로 다른 물리화학적 특성을 갖는 탄소나노튜브(CNT)의 생물학적 독성 분석)

  • Kim, Soo-Nam;Kang, Min-Sung;Han, Young-Ah;Kim, Jae-Hwan;Roh, Jin-Kyu;Kim, Young-Hun;Choi, Sang-Dun;Park, Eun-Jung
    • Clean Technology
    • /
    • v.17 no.3
    • /
    • pp.273-279
    • /
    • 2011
  • The physicochemical properties of manufactured nanomaterials can vary depending upon the methods of manufacture, although the utilized raw materials are same. Hence, the toxicity can also vary based on the methods of nanomaterials manufacture. In this study, we compared the toxicity effect of two types of CNTs (MWCNT, multi-walled carbon nanotube; SWCNT, single-walled carbon nanotube) that differ in length and wall number. In case of MWCNTs, inflammatory responses were more strongly induced in longer groups, whereas body weights more clearly decreased in shorter groups. SWCNT significantly decreased the relative weights of brain and kidney, and the inflow of immune cells and the hematological changes were observed significantly on day 1 and day 7 after exposure, respectively. Our results showed that the length and wall number of CNTs can serve as critical factors in the exhibited inflammation and toxicity.