• Title/Summary/Keyword: CNT paste

Search Result 62, Processing Time 0.027 seconds

Effects of constituents in CNT pastes on the field emission characteristics of carbon nanotubes

  • Yoon, Seung-Il;Kim, Sam-Soo;Lee, Yang-Kyu;Kim, Tae-Kwon;Lee, Dong-Gu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1206-1209
    • /
    • 2006
  • Carbon nanotubes (CNTs) have been significantly used for the field emitters for display applications. However, the lifetime of CNT emitters which are formed by screen printing technique is not guaranteed yet, because the constituents in CNT paste affect the lifetime of CNTs. The CNT pastes for screen printing are normally composed of organic vehicles (nitro cellulose, ethyl cellulose, etc) and additives (glass frits, ITO, etc) with CNTs. In this study, the effects of constituents in CNT pastes on the lifetime and emission characteristics of CNTs were investigated by thermal and electrical analysis. Use of glass frits worsened the lifetime and electron emission of CNTs. However, an addition of ITO to CNT paste rather improved the lifetime of CNTs. Degradation of CNTs was small when nitro cellulose was used in CNT paste as an organic vehicle.

  • PDF

Electroanalytical Applications Based on Carbon Nanotube/Prussian Blue Screen-printable Composite

  • Shim, Jun-Ho;Lee, Jae-Seon;Cha, Geun-Sig;Nam, Hak-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1583-1588
    • /
    • 2010
  • A single step fabrication process of carbon nanotube/Prussian Blue (CNT/PB) paste electrodes based on screen printing technology has been studied as an amperometric sensor for the determination of hydrogen peroxide and free chlorine. Compared to the classical carbon paste (CP) electrode, the CNT paste electrode greatly enhanced the response in the presence of hydrogen peroxide due to the electrocatalytic activity of the CNT. Based on the CNT/binder paste, PB was also incorporated into a network of CNT paste and characterized. The best electroanalytical properties of PB-mixed sensors to hydrogen peroxide were obtained with PB ratio of 10 wt % composition, which showed fast response time ($t_{90}{\leq}5$ s; 0.2 - 0.3 mM), low detection limit of 1.0 ${\mu}M$, good linear response in the range from $5.0{\times}10^{-5}$ - $1.0{\times}10^{-3}$ mol $L^{-1}$ ($r^2$ = 0.9998), and high sensitivity of -8.21 ${\mu}AmM^{-1}$. In order to confirm the enhanced electrochemical properties of CNT/PB electrode, the sensor was further applied for the determination of chlorine in water, which exhibited a linear response behavior in the range of 50 - 2000 ppb for chlorine with a slope of 1.10 ${\mu}Appm^{-1}$ ($r^2$ = 9971).

Effect of PbO on the Field Emission Characteristics of Carbon Nanotube Paste

  • Kim, Jun-Seop;Goak, Jeung-Choon;Lee, Han-Sung;Jeon, Ji-Hyun;Kim, Jin-Hee;Lee, Yeon-Ju;Hong, Jin-Pyo;Lee, Nae-Sung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1225-1228
    • /
    • 2006
  • In the CNT paste for field emission, PbO frit had a fatal influence on CNTs by accelerating a decomposition of CNTs during firing. In the thermogravimetric analysis on the mixtures of CNTs and other ingredients, it was evident that CNTs began to burn out at ${\sim}350^{\circ}C$ by reacting with PbO. This problem was overcome by replacing the PbO frit by the Pb-free frit such that most of CNTs could survive during firing. Consequently, the emission current of the CNT paste prepared using the lead-free frit was improved as much as 250 %, compared to the PbO-containing one. The CNT paste was further optimized by adding a dispersant, whose dispersibility was assessed by measuring the resistance of the paste. With 10% dispersant added, the emission properties of the paste was greatly enhanced as 50 times higher as those of the paste without a dispersant.

  • PDF

A Study on the Formation of Detection Electrode for the IED Removal Robot by Using A Photosensitive CNT Paste (감광성 CNT 페이스트를 이용한 IED 폭발물 제거로봇 탐지전극 형성에 관한 연구)

  • Kwon, Hye Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.4
    • /
    • pp.231-237
    • /
    • 2018
  • In this study, two important requirements for the home production of a robot to detect and remove improvised explosive devices (IEDs) are presented in terms of the total cost for robot system development and the performance improvement of the mine detection technology. Firstly, cost analyses were performed in order to provide a reasonable solution following an engineering estimate method. As a result, the total cost for a mass production system without the mine detection system was estimated to be approximately 396 million won. For the case including the mine detection system, the total cost was estimated to be approximately 411 million won, in which labor costs and overhead charges were slightly increased and the material costs for the mine detection system were negligible. Secondly, a method for fabricating the carbon nanotube (CNT) based gas detection sensor was studied. The detection electrodes were formed by a photolithography process using a photosensitive CNT paste. As a result, this method was shown to be a scalable and expandable technology for producing excellent mine detection sensors. In particular, it was found that surface treatments by using adhesive taping or ion beam bombardment methods are effective for exposing the CNTs to the ambient air environment. Fowler-Nordheim (F-N) plots were obtained from the electron-emission characteristics of the surface treated CNT paste. The F-N plot suggests that sufficient electrons are available for transport between CNT surfaces and chemical molecules, which will make an effective chemiresistive sensor for the advanced IED detection system.

Performance of Cement Paste Incorporating Oxidized MWCNT after Nitro-Sulfuric Acid treatment (질산 처리 후 산화된 MWCNT를 혼입한 시멘트 페이스트의 성능)

  • Tugelbayev, Aidyn;Kim, Ji-Hyun;Chung, Chul-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.243-244
    • /
    • 2022
  • Recently, the utilization of carbon nanotubes (CNT) in cement paste has been widely investigated in terms of improving the dispersion quality and enhancing the cement paste mechanical performance. While methods of functionalizing the CNT using surfactants to disperse the nanoparticles have been studied to some extent, the literature on the effects of chemical covalent functionalization is still scarce. This work focuses on chemical functionalization of multiwall carbon nanotubes (MWCNT) using acid treatment, and a consequent addition of the modified MWCNT to the cement paste. The microstructural observation and degree of the MWCNT functionalization are examined using FE-SEM. The compressive strength is measured at an age of 28 days. The results of the study suggest that the acid-functionalized MWCNT are dispersed better compared to the pristine MWCNT due to presence of functional groups. The better dispersion of the nanotubes and the attached functional groups may contribute to the refinement of the microstructure of the cement paste and hence, increase its mechanical strength.

  • PDF

Enhanced Electron Emission from Carbon Nanotube Paste after Firing

  • Kang, Sung-Kee;Choi, Jong-Hyung;Han, Jae-Hee;Yoo, Ji-Beom;Park, Chong-Yun;Nam, Joong-Woo;Jung, J.E.;Kim, J.M.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.849-851
    • /
    • 2003
  • After multi-walled carbon nanotubes (MWNT) powder was crushed with ball milling process, it was mixed with organic vehicles. And then CNT paste was printed on ITO coated glass substrate. The field emission characteristics of CNT pastes fired in air atmosphere was better than that of CNT paste fired in Ar ambient due to less organic residues after firing.

  • PDF

The Properties of Cement Paste Mixed with Carbon Nanotubes Dispersion Solution (탄소나노튜브 분산용액을 혼입한 시멘트 페이스트의 특성 변화)

  • Park, Sung-Hwan;Kim, Ji-Hyun;Chung, Chul-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.201-202
    • /
    • 2021
  • Currently, the domestic construction industry is trying to expand the range of building materials due to overload of growth. In particular, several studies are being conducted to make up for the weakness of building materials by solving problems such as reduction of tensile strength and brittle behavior of concrete. Among them, efforts to maximize the use of carbon nanotubes (CNT) that has excellent mechanical and electrical conductivity properties are continuing. However, CNT is hydrophobic and have a strong Van der Waals force between particles, making it difficult to obtain an effective dispersion state. Therefore, in this study, various kinds of surfactants like DOC (Sodium Deoxycholate), PVP (Polyvinylpyrrolidone), and PCE (Polycarboxylate ester) were added to improve the dispersibility of CNT, and analyzed the changes in the properties of the cement paste mixed with them.

  • PDF

Fabrication of Triode-Type CNT-FED by A Screen-printing of CNT Paste

  • Kwon, Sang-Jik;Shon, Byeong-Kyoo;Chung, Hak-June;Lee, Sang-Heon;Choi, Hyung-Wook;Lee, Jong-Duk;Lee, Chun-Gyoo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.866-869
    • /
    • 2004
  • A carbon nanotube field emission display(CNT FED) panel with a 2 inch diagonal size was fabricated by using a screen printing of a prepared photo-sensitive CNT paste and vacuum in-line sealing technology. After a surface treatment of the patterned CNT, only the carbon nanotube tips are uniformly exposed on the surface. The diameter of the exposed CNTs are usually about 20nm. The sealing temperature of the panel was around 390 $^{\circ}C$ and the vacuum level was obtained with $1.4{\times}10^{-5}$torr at the sealing. The field emission properties of the diode type CNT FED panel were characterized Now, we are developing a triode type CNT FED with a self-aligned gate-emitter structure.

  • PDF

Effects of additives and post-treatments on emission characteristics of carbon nanotubes field emitters by screen printing method

  • Lee, Duck-Jin;Kim, Sam-Soo;Lee, Yang-Kyu;Chun, Hyun-Tae;Lee, Dong-Gu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1447-1450
    • /
    • 2005
  • Carbon nanotube field emission display devices were fabricated using screen printing techniques. The CNT pastes are composed of organic binder, CNT, and additive materials such as glass frit, silver or ITO powders. The change in mixing ratio of various organic binders in CNT paste varied the electron emission characteristics. With increasing the contents of additive materials in CNT paste, turn-on field were increased, leading to decrease in electron emission current. The post-treatment process in this study induced the vertical alignment of carbon nanotubes on glass, resulting in the improvement of electron emission uniformity.

  • PDF

The Reliability Evaluation about the Triode-Type CNT Emission Source (삼극형 CNT 전자원에 대한 신뢰성 평가)

  • Kang, J.T.;Kim, D.J.;Jeong, J.W.;Kim, D.I.;Kim, J.S.;Lee, H.R.;Song, Y.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.2
    • /
    • pp.79-84
    • /
    • 2009
  • The electron emission source of triode type has been fabricated using CNT paste. The nano Ag particle and photosensitive polymers were added to the CNT paste. The surface roughness of the CNT emitter was uniform by the back exposure method. The added nano Ag particle improves the adhesion and the electric conductance with small variation in the CNTs and between electrode. After the aging with heat-exhausting, the reliability of the triode CNT electron source was secured in the high voltage and current operation for 12 hours. At this time, the gate leakage current was about 10 % less than.