• Title/Summary/Keyword: CNR(Contrast to Noise Ratio)

Search Result 178, Processing Time 0.029 seconds

X-ray Absorptiometry Image Enhancement using Sparse Representation (Sparse 표현을 이용한 X선 흡수 영상 개선)

  • Kim, Hyungil;Eom, Wonyong;Ro, Yong Man
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.10
    • /
    • pp.1205-1211
    • /
    • 2012
  • Recently, the evaluating method of the bone mineral density (BMD) in X-ray absorptiometry image has been studied for the early diagnosis of osteoporosis which is known as a metabolic disease. The BMD, in general, is evaluated by calculating pixel intensity in the bone segmented regions. Accurate bone region extraction is extremely crucial for the BMD evaluation. So, a X-Ray image enhancement is needed to get precise bone segmentation. In this paper, we propose an image enhancement method of X-ray image having multiple noise based sparse representation. To evaluate the performance of proposed method, we employ the contrast to noise ratio (CNR) metric and cut-view graphs visualizing image enhancement performance. Experimental results show that the proposed method outperforms the BayesShrink noise reduction methods and the previous noise reduction method in sparse representation with general noise model.

Evaluation of Validity Thyroid Scintigraphy Using Parallel Hole Collimator (갑상샘 신티그래피 검사 시 평행다공형 조준기 적용의 유효성 평가)

  • Su-Young Park;Ji-Youn Kim;Sung-Min Ahn
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.1
    • /
    • pp.27-36
    • /
    • 2024
  • In this study, When acquisition thyroid scintigraphy images, a parallel hole collimator was applied, and the difference from the pinhole collimator was quantitatively analyzed under each image acquisition condition. Visual size, resolution, sensitivity, signal to noise ratio (SNR), and contrast to noise ratio (CNR) were evaluated using thyroid phantom and point source. When comparing visual size, it was confirmed that an image similar to the size of the pinhole collimator could be obtained only when a magnification ratio of about 2.00 to 2.09 times when applying a parallel hole collimator. There was no tendency in FWHM(mm) measurement using a point source, and sensitivity was high in the parallel hole collimator. SNR and CNR were high when using a low magnification ratio, matrix size of 128×128, and a parallel hole collimator. In images of similar size to the naked eye, when the matrix size was the same, both SNR and CNR were high in the pinhole collimator. Therefore, when performing a thyroid scintigraphy test, if appropriate conditions are set according to the situation of each hospital and a parallel hole collimator is applied, it can be a good option in terms of equipment utilization and work efficiency.

A Simulation Study on Image Quality of Virtual Monochromatic Image using Dual-energy Method (이중에너지 방법을 이용한 가상 단색 영상의 화질 시뮬레이션 연구)

  • Son, Ki-Hong;Lee, Soo-Yeul;Kim, Dae-Hong;Chung, Myung-Ae
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.5
    • /
    • pp.553-558
    • /
    • 2022
  • The purpose of this work was a simulation study to evaluate the virtual monochromatic (VM) image quality of blood vessels compared to the monochromatic image. Dual-energy images were obtained based on the linear attenuation coefficients of five materials at 50 keV and 80 keV at low- and high-energies, respectively. A weighting factor is required to synthesize the VM image, and the liver and bone were used as basis materials to obtain the weighting factor. VM images were synthesized at energies ranging from 30 keV to 100 keV. Image quality was evaluated by Contrast to noise ratio (CNR) and noise by setting calcium and contrast medium as signals and blood as background. According to the results, the energies with the maximum CNR were 50 keV and 60 keV for calcium and contrast medium, respectively. The energies showing the minimum noise were 70 keV, 70 keV, and 60 keV in calcium, iodine contrast medium, and blood, respectively. The VM image can contribute to the improvement of diagnostic performance in CT examination because it can implement an image at the optimal energy that minimize noise and maximize CNR.

Depending on PACS Operating System Differences Analysis of Usefulness of Lossless Compression Method in Medical Image Upload: SNR, CNR, Histogram Comparative Analysis (PACS운영 시스템 차이에 따른 의료 영상 업로드 시 무손실 압축 방식의 유용성 분석: SNR, CNR, Histogram 비교 분석을 중심으로)

  • Choi, Ji-An;Hwang, Jun-Ho;Lee, Kyung-Bae
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.3
    • /
    • pp.299-308
    • /
    • 2018
  • This study focused on the fact that medical images that are issued at different hospitals may affect image quality on PACS when different software is used. A university hospital image was copied to the DICOM file and registered on the PACS of the university hospital B. The capacity and image quality of the software used in the university hospital were evaluated by SNR, CNR and histogram. As the compression ratio increased, SNR and CNR tended to decrease. Note that Lossless Compression decreased the data size by half compared to No Compression, but SNR and CNR did not change. As a result of the histogram analysis, the information loss due to the underflow phenomenon was conspicuous. When moving to another hospital, No compression or lossless compression method should be used. In conclusion, it is useful to use the lossless compression method, considering waiting time and economic efficiency in uploading.

Usefulness of Carbon Fiber Reinforced Plastics as a Material of Auxiliary Tool for X-ray Imaging (엑스선 촬영 시 보조도구 재료로써 탄소 섬유 강화 플라스틱의 유용성)

  • Joon-Ho Moon;Bon-Yeoul Koo
    • Journal of radiological science and technology
    • /
    • v.46 no.3
    • /
    • pp.197-205
    • /
    • 2023
  • When taking X-rays, various auxiliary tools were used to fix a patient's exact shooting position and posture. In this study, we evaluated the usefulness of carbon fiber reinforced plastics(CFRP) 3K as a material of auxiliary tools by comparing poly methyl metha acrylate(PMMA), polycarbonate(PC), and CFRP 3K each of which has high radiolucency. X-ray radiolucencies were measured by stacking 1 mm panels of each material, and contrast to noise ratio(CNR) and signal to noise ratio(SNR) of images of each material were measured by comparing with None, which stands for images that are taken without any material. All three materials showed over 90% X-ray radiolucencies within 2 ㎜ thickness, and there was no significant difference. PC, PMMA and CFRP 3K had high CNR and SNR in order, and CFRP 3K showed the closest CNR and SNR to those of None. While taking X-rays, by using CFRP 3K material within 2 ㎜ thickness as a material of auxiliary tools, which are used to reduce re-shooting and X-ray exposure by fixing a patient's exact shooting position and posture and improve the quality of medical images, a high X-ray radiolucency of over 90% would be obtained, and the influence on the image could be minimized.

3T MR Spin Echo T1 Weighted Image at Optimization of Flip Angle (3T MR 스핀에코 T1강조영상에서 적정의 숙임각)

  • Bae, Sung-Jin;Lim, Chung-Hwang
    • Journal of radiological science and technology
    • /
    • v.32 no.2
    • /
    • pp.177-182
    • /
    • 2009
  • Purpose : This study presents the optimization of flip angle (FA) to obtain higher contrast to noise ratio (CNR) and lower specific absorption rate (SAR). Materials and Method : T1-weighted images of the cerebrum of brain were obtained from 50$^\circ$ to 130$^\circ$ FA with 10$^\circ$ interval. Signal to noise ratios (SNRs) were calculated for white matter (WM), gray matter (GM), and background noise. The proper FA was analyzed by T-test statistics and Kruskal-wallis analysis using R1 = 1- exp ($\frac{-TR}{T1}$) and Ernst angle cos $\theta$ = exp ($\frac{-TR}{T1}$). Results : The SNR of WM at 130$^\circ$ FA is approximately 1.6 times higher than the SNR of WM at 50$^\circ$. The SNR of GM at 130$^\circ$ FA is approximately 1.9 times higher than the SNR of GM at 50$^\circ$. Although the SNRs of WM and GM showed similar trends with the change of FA values, the slowdown point of decrease after linear fitting were different. While the SNR of WM started decreasing at 120$^\circ$ FA, the SNR of GM started decreasing at less than 110$^\circ$. The highest SNRs of WM and GM were obtained at 130$^\circ$ FA. The highest CNRs, however, were obtained at 80$^\circ$ FA. Conclusion : Although SNR increased with the change of FA values from 50$^\circ$ to 130$^\circ$ at 3T SE T1WI, CNR was higher at 80$^\circ$ FA than at the usually used 90$^\circ$ FA. In addition, the SAR was decreased by using smaller FA. The CNR can be increased by using this optimized FA at 3T MR SE T1WI.

  • PDF

Application of a newly developed software program for image quality assessment in cone-beam computed tomography

  • de Oliveira, Marcus Vinicius Linhares;Santos, Antonio Carvalho;Paulo, Graciano;Campos, Paulo Sergio Flores;Santos, Joana
    • Imaging Science in Dentistry
    • /
    • v.47 no.2
    • /
    • pp.75-86
    • /
    • 2017
  • Purpose: The purpose of this study was to apply a newly developed free software program, at low cost and with minimal time, to evaluate the quality of dental and maxillofacial cone-beam computed tomography (CBCT) images. Materials and Methods: A polymethyl methacrylate (PMMA) phantom, CQP-IFBA, was scanned in 3 CBCT units with 7 protocols. A macro program was developed, using the free software ImageJ, to automatically evaluate the image quality parameters. The image quality evaluation was based on 8 parameters: uniformity, the signal-to-noise ratio (SNR), noise, the contrast-to-noise ratio (CNR), spatial resolution, the artifact index, geometric accuracy, and low-contrast resolution. Results: The image uniformity and noise depended on the protocol that was applied. Regarding the CNR, high-density structures were more sensitive to the effect of scanning parameters. There were no significant differences between SNR and CNR in centered and peripheral objects. The geometric accuracy assessment showed that all the distance measurements were lower than the real values. Low-contrast resolution was influenced by the scanning parameters, and the 1-mm rod present in the phantom was not depicted in any of the 3 CBCT units. Smaller voxel sizes presented higher spatial resolution. There were no significant differences among the protocols regarding artifact presence. Conclusion: This software package provided a fast, low-cost, and feasible method for the evaluation of image quality parameters in CBCT.

Effect of Metals used in Orthopedic on Magnetic Resonance Imaging III (정형 보철용 금속이 자기공명영상에 미치는 영향 III)

  • Kim, Hyeong-Gyun;Choi, Seong-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.42-47
    • /
    • 2012
  • Followed by a paper on the Pig and Bone orthopedic prosthetic, this experiment using Phantom and Bone MRI imaging I, II of orthopedic prosthetic metal effect combines magnetic resonance imaging on metal signal-to-noise ratio(Signal to noise : SNR) and CNR(Contrast to noise: CNR), fat signal suppression(Fat-suppression) images was compared. Specimen trees to measure the reliability of the experimental reproducibility tests and statistical analysis using the SPSS statistical package was applied program SPSS(IBM SPSS Statistice 19) by * P = 0.000 < significance level $({\alpha})$ = 0.01 as a significant there was a correlation(** P < 0.01). SNR and CNR results did not directly proportional to the Titanium, Stainless, Clip CNR and fat signal suppression of the order of images of blood specimens was found to be close to the image. The impact of orthopedic prosthetic metals on magnetic resonance imaging in the diagnostic value of Titanium is relatively high and are meant more.

Evaluation of Image Quality according to the Use of Attachable X-ray Table Equipped with Heating Device (가열장치를 구비한 부착형 X선 촬영대의 사용에 따른 화질 평가)

  • Song, Jongnam;Kim, Eungkon
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.4
    • /
    • pp.219-225
    • /
    • 2015
  • This study aims to evaluates the image quality of CR and DR that are scanned with the use of the attachable carbon heater X-ray scanner table equipped with heating device by measuring SNR and CNR before and after the attachment of the said table. In the aluminum staircase testing, CR increased SNR and CNR when attached with the table, while DR decreased SNR and CNR. In the human-body model phantom testing, CR increased SNR and CNR only in the low-energy low-dose radiation and the high-energy high-dose radiation, but decreased SNR and CNR under all other conditions. In conclusion, the use of such table can make the patient feel comfortable by removing his or her anxiety, thus helping the testing, but in the actual clinical application thereof, if the thickness and material of the bottom film and the protective film, including the carbon heater, are not considered, it affects the picture quality, thereby requiring continuous research on the use of such table.

Correlation Analysis of Control Factors in Automatic Exposure Control of Digital Radiography System Based on Fine Contrast Images (미세 대조도 영상을 기반한 디지털 방사선 영상 시스템의 자동노출제어 조절인자 간의 상관관계 분석)

  • Lim, Se-Hun;Seoung, Youl-Hun
    • Journal of radiological science and technology
    • /
    • v.44 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • The purpose of this study was to analyze the effect of automatic exposure control (AEC) control factors in digital radiography systems based on the fine contrast images using coin phantoms. The AEC control factors were targeted at the range of dominent zone, sensitivity, and density. The dominent zone was divided into cases where a single coin was used to cover the field configuration, and cases where seven coins were used to cover the field configuration. The sensitivity was classified into three stages (200, 400, 800) and the density was classified into three stages (2.5, 0, 2.5). Image quality was evaluated by signal to noise ratio (SNR) and contrast to noise ratio (CNR). Then, the automatically exposed tube current was measured. As a result, the X-ray image of seven coins obtained a result value of about 1.2 times higher for SNR and 1.9 times higher for CNR than the X-ray image for one coin. The tube current was also about 1.6 times higher. In conclusion, In AEC, the higher the field configuration and dominent zone are matched and the higher the density, the lower the sensitivity, which increases the tube current and CNR, which increases the image quality. Therefore, it is judged that the appropriate setting of the range of dominent zone, sensitivity, and density of the control, which is the AEC control factor, could improve the fine contrast of images.