• Title/Summary/Keyword: CNN deep learning methods

Search Result 271, Processing Time 0.034 seconds

Concrete Crack Detection and Visualization Method Using CNN Model (CNN 모델을 활용한 콘크리트 균열 검출 및 시각화 방법)

  • Choi, Ju-hee;Kim, Young-Kwan;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.73-74
    • /
    • 2022
  • Concrete structures occupy the largest proportion of modern infrastructure, and concrete structures often have cracking problems. Existing concrete crack diagnosis methods have limitations in crack evaluation because they rely on expert visual inspection. Therefore, in this study, we design a deep learning model that detects, visualizes, and outputs cracks on the surface of RC structures based on image data by using a CNN (Convolution Neural Networks) model that can process two- and three-dimensional data such as video and image data. do. An experimental study was conducted on an algorithm to automatically detect concrete cracks and visualize them using a CNN model. For the three deep learning models used for algorithm learning in this study, the concrete crack prediction accuracy satisfies 90%, and in particular, the 'InceptionV3'-based CNN model showed the highest accuracy. In the case of the crack detection visualization model, it showed high crack detection prediction accuracy of more than 95% on average for data with crack width of 0.2 mm or more.

  • PDF

CNN deep learning based estimation of damage locations of a PSC bridge using static strain data (정적 변형률 데이터를 사용한 CNN 딥러닝 기반 PSC 교량 손상위치 추정)

  • Han, Man-Seok;Shin, Soo-Bong;An, Hyo-Joon
    • Journal of KIBIM
    • /
    • v.10 no.2
    • /
    • pp.21-28
    • /
    • 2020
  • As the number of aging bridges increases, more studies are being conducted on developing effective and reliable methods for the assessment and maintenance of bridges. With the advancement in new sensing systems and data learning techniques through AI technology, there is growing interests in how to evaluate bridges using these advanced techniques. This paper presents a CNN(Convolution Neural Network) deep learning based technique for evaluating the damage existence and for estimating the damage location in PSC bridges using static strain data. Simulation studies were conducted to investigate the proposed method with error analysis. Damage was simulated as the reduction in the stiffness of a finite element. A data learning model was constructed by applying the CNN technique as a type of deep learning. The damage status and its location were estimated using data set built through simulation. It was assumed that the strain gauges were installed in a regular interval under the PSC bridge girders. In order to increase the accuracy in evaluating damage, the squared error between the intact and measured strains are computed and applied for training the data model. Considering the damage occurring near the supports, the results of error analysis were compared according to whether strain data near the supports were included.

Sentiment Orientation Using Deep Learning Sequential and Bidirectional Models

  • Alyamani, Hasan J.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.11
    • /
    • pp.23-30
    • /
    • 2021
  • Sentiment Analysis has become very important field of research because posting of reviews is becoming a trend. Supervised, unsupervised and semi supervised machine learning methods done lot of work to mine this data. Feature engineering is complex and technical part of machine learning. Deep learning is a new trend, where this laborious work can be done automatically. Many researchers have done many works on Deep learning Convolutional Neural Network (CNN) and Long Shor Term Memory (LSTM) Neural Network. These requires high processing speed and memory. Here author suggested two models simple & bidirectional deep leaning, which can work on text data with normal processing speed. At end both models are compared and found bidirectional model is best, because simple model achieve 50% accuracy and bidirectional deep learning model achieve 99% accuracy on trained data while 78% accuracy on test data. But this is based on 10-epochs and 40-batch size. This accuracy can also be increased by making different attempts on epochs and batch size.

Is it possible to forecast KOSPI direction using deep learning methods?

  • Choi, Songa;Song, Jongwoo
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.4
    • /
    • pp.329-338
    • /
    • 2021
  • Deep learning methods have been developed, used in various fields, and they have shown outstanding performances in many cases. Many studies predicted a daily stock return, a classic example of time-series data, using deep learning methods. We also tried to apply deep learning methods to Korea's stock market data. We used Korea's stock market index (KOSPI) and several individual stocks to forecast daily returns and directions. We compared several deep learning models with other machine learning methods, including random forest and XGBoost. In regression, long short term memory (LSTM) and gated recurrent unit (GRU) models are better than other prediction models. For the classification applications, there is no clear winner. However, even the best deep learning models cannot predict significantly better than the simple base model. We believe that it is challenging to predict daily stock return data even if we use the latest deep learning methods.

Comparative Analysis for Emotion Expression Using Three Methods Based by CNN (CNN기초로 세 가지 방법을 이용한 감정 표정 비교분석)

  • Yang, Chang Hee;Park, Kyu Sub;Kim, Young Seop;Lee, Yong Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.65-70
    • /
    • 2020
  • CNN's technologies that represent emotional detection include primitive CNN algorithms, deployment normalization, and drop-off. We present the methods and data of the three experiments in this paper. The training database and the test database are set up differently. The first experiment is to extract emotions using Batch Normalization, which complemented the shortcomings of distribution. The second experiment is to extract emotions using Dropout, which is used for rapid computation. The third experiment uses CNN using convolution and maxpooling. All three results show a low detection rate, To supplement these problems, We will develop a deep learning algorithm using feature extraction method specialized in image processing field.

Effects of Preprocessing and Feature Extraction on CNN-based Fire Detection Performance (전처리와 특징 추출이 CNN기반 화재 탐지 성능에 미치는 효과)

  • Lee, JeongHwan;Kim, Byeong Man;Shin, Yoon Sik
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.4
    • /
    • pp.41-53
    • /
    • 2018
  • Recently, the development of machine learning technology has led to the application of deep learning technology to existing image based application systems. In this context, some researches have been made to apply CNN (Convolutional Neural Network) to the field of fire detection. To verify the effects of existing preprocessing and feature extraction methods on fire detection when combined with CNN, in this paper, the recognition performance and learning time are evaluated by changing the VGG19 CNN structure while gradually increasing the convolution layer. In general, the accuracy is better when the image is not preprocessed. Also it's shown that the preprocessing method and the feature extraction method have many benefits in terms of learning speed.

Deep Learning Method for Improving Contamination Dectection of Xoray Inspection System (X-ray 이물검출기의 이물 검출 향상을 위한 딥러닝 방법)

  • Lim, Byung Hey;Jeong, Seung Su;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.460-462
    • /
    • 2021
  • Food basically must have nutrition and safety. Recently, a number of symptoms of food poisoning occurred in a kindergarten in Ansan, where food safety was suspected. Therefore, the safety of food is more demanding. In this paper, we propose a method to inprove the detector to secure food safety. The proposed method is to learn through the network of convolution neural network (CNN) and Faster region-CNN (Faster R-CNN) and test the images of normal and foreign products. As a result of testing through a deep learning model, the method that used Faster R-CNN in parallel with the existing foreign body detector algorithm showed better detection rate than other methods.

  • PDF

CNN based IEEE 802.11 WLAN frame format detection (CNN 기반의 IEEE 802.11 WLAN 프레임 포맷 검출)

  • Kim, Minjae;Ahn, Heungseop;Choi, Seungwon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.2
    • /
    • pp.27-33
    • /
    • 2020
  • Backward compatibility is one of the key issues for radio equipment supporting IEEE 802.11, the typical wireless local area networks (WLANs) communication protocol. For a successful packet decoding with the backward compatibility, the frame format detection is a core precondition. This paper presents a novel frame format detection method based on a deep learning procedure for WLANs affiliated with IEEE 802.11. Considering that the detection performance of conventional methods is degraded mainly due to the poor performances in the symbol synchronization and/or channel estimation in low signal-to-noise-ratio environments, we propose a novel detection method based on convolutional neural network (CNN) that replaces the entire conventional detection procedures. The proposed deep learning network provides a robust detection directly from the receive data. Through extensive computer simulations performed in the multipath fading channel environments (modeled by Project IEEE 802.11 Task Group ac), the proposed method exhibits superb improvement in the frame format detection compared to the conventional method.

Gesture-Based Emotion Recognition by 3D-CNN and LSTM with Keyframes Selection

  • Ly, Son Thai;Lee, Guee-Sang;Kim, Soo-Hyung;Yang, Hyung-Jeong
    • International Journal of Contents
    • /
    • v.15 no.4
    • /
    • pp.59-64
    • /
    • 2019
  • In recent years, emotion recognition has been an interesting and challenging topic. Compared to facial expressions and speech modality, gesture-based emotion recognition has not received much attention with only a few efforts using traditional hand-crafted methods. These approaches require major computational costs and do not offer many opportunities for improvement as most of the science community is conducting their research based on the deep learning technique. In this paper, we propose an end-to-end deep learning approach for classifying emotions based on bodily gestures. In particular, the informative keyframes are first extracted from raw videos as input for the 3D-CNN deep network. The 3D-CNN exploits the short-term spatiotemporal information of gesture features from selected keyframes, and the convolutional LSTM networks learn the long-term feature from the features results of 3D-CNN. The experimental results on the FABO dataset exceed most of the traditional methods results and achieve state-of-the-art results for the deep learning-based technique for gesture-based emotion recognition.

Text Classification by Deep Learning Fusion (딥러닝 융합에 의한 텍스트 분류)

  • Shin, Kwang-Seong;Ham, Seo-Hyun;Shin, Seong-Yoon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.385-386
    • /
    • 2019
  • This paper proposes a fusion model based on Long-Short Term Memory networks (LSTM) and CNN deep learning methods, and applied to multi-category news datasets, and achieved good results. Experiments show that the fusion model based on deep learning has greatly improved the precision and accuracy of text sentiment classification.

  • PDF