• 제목/요약/키워드: CNN algorithms

검색결과 229건 처리시간 0.031초

암반공학분야에 적용된 인공지능 알고리즘 분석 (An Analysis of Artificial Intelligence Algorithms Applied to Rock Engineering)

  • 김양균
    • 터널과지하공간
    • /
    • 제31권1호
    • /
    • pp.25-40
    • /
    • 2021
  • 4차 산업혁명 시대의 도래에 따라 암반공학분야에서도 인공지능을 활용한 연구가 점차 증가하고 있다. 본 논문에서는 인공지능에 대한 이해와 그 활용도를 더욱 증진시키기 위하여, 암반공학기술의 주된 적용대상인 터널, 발파, 광산과 관련된 최근의 국내외 연구 중 인공지능이 활용된 논문들에서 그 알고리즘의 종류와 적용방법을 분석하였다. 터널에서는 암반분류, TBM굴진율 및 막장전방 지질 예측, 발파에서는 암반의 파쇄도 및 비산거리, 광산에서는 폐광의 침하가능성 예측을 위해 주로 활용되고 있으며, 기계학습의 다양한 알고리즘 중 인공신경망이 압도적으로 많이 활용되고 있는 것으로 나타났다. 연구결과의 정확도와 신뢰성 제고를 위해 사용하고자 하는 인공지능 알고리즘에 대한 정확하고 상세한 이해가 필수적이며, 현재는 접근이나 분석이 난해한 암반공학 분야의 다양한 문제해결을 위해 기계학습뿐 아니라 CNN 또는 RNN과 같은 딥러닝을 활용한 연구 아이디어들이 점차 증가될 것으로 기대된다.

이진 분류문제에서의 딥러닝 알고리즘의 활용 가능성 평가 (Feasibility of Deep Learning Algorithms for Binary Classification Problems)

  • 김기태;이보미;김종우
    • 지능정보연구
    • /
    • 제23권1호
    • /
    • pp.95-108
    • /
    • 2017
  • 최근 알파고의 등장으로 딥러닝 기술에 대한 관심이 고조되고 있다. 딥러닝은 향후 미래의 핵심 기술이 되어 일상생활의 많은 부분을 개선할 것이라는 기대를 받고 있지만, 주요한 성과들이 이미지 인식과 자연어처리 등에 국한되어 있고 전통적인 비즈니스 애널리틱스 문제에의 활용은 미비한 실정이다. 실제로 딥러닝 기술은 Convolutional Neural Network(CNN), Recurrent Neural Network(RNN), Deep Boltzmann Machine (DBM) 등 알고리즘들의 선택, Dropout 기법의 활용여부, 활성 함수의 선정 등 다양한 네트워크 설계 이슈들을 가지고 있다. 따라서 비즈니스 문제에서의 딥러닝 알고리즘 활용은 아직 탐구가 필요한 영역으로 남아있으며, 특히 딥러닝을 현실에 적용했을 때 발생할 수 있는 여러 가지 문제들은 미지수이다. 이에 따라 본 연구에서는 다이렉트 마케팅 응답모델, 고객이탈분석, 대출 위험 분석 등의 주요한 분류 문제인 이진분류에 딥러닝을 적용할 수 있을 것인지 그 가능성을 실험을 통해 확인하였다. 실험에는 어느 포르투갈 은행의 텔레마케팅 응답여부에 대한 데이터 집합을 사용하였으며, 전통적인 인공신경망인 Multi-Layer Perceptron, 딥러닝 알고리즘인 CNN과 RNN을 변형한 Long Short-Term Memory, 딥러닝 모형에 많이 활용되는 Dropout 기법 등을 이진 분류 문제에 활용했을 때의 성능을 비교하였다. 실험을 수행한 결과 CNN 알고리즘은 비즈니스 데이터의 이진분류 문제에서도 MLP 모형에 비해 향상된 성능을 보였다. 또한 MLP와 CNN 모두 Dropout을 적용한 모형이 적용하지 않은 모형보다 더 좋은 분류 성능을 보여줌에 따라, Dropout을 적용한 CNN 알고리즘이 이진분류 문제에도 활용될 수 있는 가능성을 확인하였다.

Mask R-CNN을 이용한 물체인식 및 개체분할의 학습 데이터셋 자동 생성 (Automatic Dataset Generation of Object Detection and Instance Segmentation using Mask R-CNN)

  • 조현준;김다윗;송재복
    • 로봇학회논문지
    • /
    • 제14권1호
    • /
    • pp.31-39
    • /
    • 2019
  • A robot usually adopts ANN (artificial neural network)-based object detection and instance segmentation algorithms to recognize objects but creating datasets for these algorithms requires high labeling costs because the dataset should be manually labeled. In order to lower the labeling cost, a new scheme is proposed that can automatically generate a training images and label them for specific objects. This scheme uses an instance segmentation algorithm trained to give the masks of unknown objects, so that they can be obtained in a simple environment. The RGB images of objects can be obtained by using these masks, and it is necessary to label the classes of objects through a human supervision. After obtaining object images, they are synthesized with various background images to create new images. Labeling the synthesized images is performed automatically using the masks and previously input object classes. In addition, human intervention is further reduced by using the robot arm to collect object images. The experiments show that the performance of instance segmentation trained through the proposed method is equivalent to that of the real dataset and that the time required to generate the dataset can be significantly reduced.

A Deep Learning Model for Extracting Consumer Sentiments using Recurrent Neural Network Techniques

  • Ranjan, Roop;Daniel, AK
    • International Journal of Computer Science & Network Security
    • /
    • 제21권8호
    • /
    • pp.238-246
    • /
    • 2021
  • The rapid rise of the Internet and social media has resulted in a large number of text-based reviews being placed on sites such as social media. In the age of social media, utilizing machine learning technologies to analyze the emotional context of comments aids in the understanding of QoS for any product or service. The classification and analysis of user reviews aids in the improvement of QoS. (Quality of Services). Machine Learning algorithms have evolved into a powerful tool for analyzing user sentiment. Unlike traditional categorization models, which are based on a set of rules. In sentiment categorization, Bidirectional Long Short-Term Memory (BiLSTM) has shown significant results, and Convolution Neural Network (CNN) has shown promising results. Using convolutions and pooling layers, CNN can successfully extract local information. BiLSTM uses dual LSTM orientations to increase the amount of background knowledge available to deep learning models. The suggested hybrid model combines the benefits of these two deep learning-based algorithms. The data source for analysis and classification was user reviews of Indian Railway Services on Twitter. The suggested hybrid model uses the Keras Embedding technique as an input source. The suggested model takes in data and generates lower-dimensional characteristics that result in a categorization result. The suggested hybrid model's performance was compared using Keras and Word2Vec, and the proposed model showed a significant improvement in response with an accuracy of 95.19 percent.

CNN 가속기의 효율적인 데이터 전송을 위한 메모리 데이터 레이아웃 및 DMA 전송기법 연구 (Memory data layout and DMA transfer technique research For efficient data transfer of CNN accelerator)

  • 조석재;박성경;박성정
    • 전기전자학회논문지
    • /
    • 제24권2호
    • /
    • pp.559-569
    • /
    • 2020
  • 딥 러닝 알고리즘 중 하나인 CNN 인공지능 어플리케이션은 하드웨어 측면에서 컨벌루션 레이어의 많은 데이터들을 저장하기 위해 오프 칩 메모리를 사용 하고, DMA를 사용하여 매 데이터 전송 시 프로세서의 부하를 줄여 성능을 향상 시킬 수 있다. 또한 컨벌루션 레이어의 데이터를 가속기의 글로벌 버퍼에 전송되는 순서를 다르게 하여 어플리케이션의 성능의 저하를 줄일 수 있다. 불 연속된 메모리 주소를 가지고 있는 베이직 레이아웃의 경우 SG-DMA를 사용 할 때 ordinary DMA를 사용할 때보다 DMA를 사전 설정하는 부분에서 약 3.4배의 성능향상을 보였고 연속적인 메모리 주소를 가지고 있는 아이디얼 레이아웃의 경우 ordinary DMA 와 SG-DMA를 사용하는 두가지 경우 모두 1396 사이클 정도의 오버헤드를 가졌다. 가장 효율적인 메모리 데이터 레이아웃과 DMA의 조합은 프로세서의 DMA 사전 설정 부하를 약 86 퍼센트까지 감소할 수 있음을 실험을 통해 확인했다.

치매 진단을 위한 Faster R-CNN 활용 MRI 바이오마커 자동 검출 연동 분류 기술 개발 (Alzheimer's Disease Classification with Automated MRI Biomarker Detection Using Faster R-CNN for Alzheimer's Disease Diagnosis)

  • 손주형;김경태;최재영
    • 한국멀티미디어학회논문지
    • /
    • 제22권10호
    • /
    • pp.1168-1177
    • /
    • 2019
  • In order to diagnose and prevent Alzheimer's Disease (AD), it is becoming increasingly important to develop a CAD(Computer-aided Diagnosis) system for AD diagnosis, which provides effective treatment for patients by analyzing 3D MRI images. It is essential to apply powerful deep learning algorithms in order to automatically classify stages of Alzheimer's Disease and to develop a Alzheimer's Disease support diagnosis system that has the function of detecting hippocampus and CSF(Cerebrospinal fluid) which are important biomarkers in diagnosis of Alzheimer's Disease. In this paper, for AD diagnosis, we classify a given MRI data into three categories of AD, mild cognitive impairment, and normal control according by applying 3D brain MRI image to the Faster R-CNN model and detect hippocampus and CSF in MRI image. To do this, we use the 2D MRI slice images extracted from the 3D MRI data of the Faster R-CNN, and perform the widely used majority voting algorithm on the resulting bounding box labels for classification. To verify the proposed method, we used the public ADNI data set, which is the standard brain MRI database. Experimental results show that the proposed method achieves impressive classification performance compared with other state-of-the-art methods.

3차원 특징볼륨을 이용한 깊이영상 생성 모델 (Depth Map Estimation Model Using 3D Feature Volume)

  • 신수연;김동명;서재원
    • 한국콘텐츠학회논문지
    • /
    • 제18권11호
    • /
    • pp.447-454
    • /
    • 2018
  • 본 논문은 컨볼루션 신경망으로 이루어진 학습 모델을 통해 스테레오 영상의 깊이영상 생성 알고리즘을 제안한다. 제안하는 알고리즘은 좌, 우 시차 영상을 입력으로 받아 각 시차영상의 주요 특징을 추출하는 특징 추출부와 추출된 특징을 이용하여 시차 정보를 학습하는 깊이 학습부로 구성된다. 우선 특징 추출부는 2D CNN 계층들로 이루어진 익셉션 모듈(xception module) 및 ASPP 모듈(atrous spatial pyramid pooling) module을 통해 각각의 시차영상에 대한 특징맵을 추출한다. 그 후 각 시차에 대한 특징 맵을 시차에 따라 3차원 형태로 쌓아 3D CNN을 통해 깊이 추정 가중치를 학습하는 깊이 학습부를 거친 후 깊이 영상을 추정한다. 제안하는 알고리즘은 객체 영역에 대해 기존의 다른 학습 알고리즘들 보다 정확한 깊이를 추정하였다.

Faster R-CNN과 이미지 오그멘테이션 기법을 이용한 화염감지에 관한 연구 (A Study on Flame Detection using Faster R-CNN and Image Augmentation Techniques)

  • 김재중;류진규;곽동걸;변선준
    • 전기전자학회논문지
    • /
    • 제22권4호
    • /
    • pp.1079-1087
    • /
    • 2018
  • 최근 딥러닝(deep learning) 인공지능 기반의 컴퓨터 비전 분야는 각종 영상분석 분야에서 화제로 떠오르고 있다. 본 연구에서는 딥러닝 기반의 여러 이미지 인식 알고리즘 중 이미지 내에서 객체를 검출하는 데 사용되는 Faster R-CNN 알고리즘을 이용하여 화재 이미지에서 불꽃을 검출하고자 한다. 학습 과정에서 소량의 데이터셋을 통한 화재검출 정확도 향상을 위해 이미지 오그멘테이션(image augmentation) 기법을 이용하고, 이미지 오그멘테이션을 6가지 유형별로 나누어 학습하여 정확도, 정밀도, 검출률을 비교하였다. 그 결과, 이미지 오그멘테이션의 종류가 늘어날수록 검출률이 상승하지만, 다른 객체 검출 모델들의 일반적인 정확도와 검출률의 관계와 마찬가지로 오검출율 또한 10%에서 최대 30%까지 증가하게 됨을 확인하였다.

기계학습에 의한 후두 장애음성 식별기의 성능 비교 (Performance comparison on vocal cords disordered voice discrimination via machine learning methods)

  • 조철우;왕수건;권익환
    • 말소리와 음성과학
    • /
    • 제14권4호
    • /
    • pp.35-43
    • /
    • 2022
  • 본 논문은 후두 장애음성 데이터의 식별률을 CNN과 기계학습 앙상블 학습 방법에 의해 개선하는 방법에 대한 연구이다. 일반적으로 후두 장애음성 데이터는 그 수가 적으므로 통계적 방법에 의해 식별기가 구성되더라도, 훈련 방식에 따라 과적합으로 인해 일어나는 현상으로 인해 외부 데이터에 노출될 시 식별률의 저하가 발생할 수 있다. 본 연구에서는 다양한 정확도를 갖도록 훈련된 CNN 모델과 기계학습 모델로부터 도출된 결과를 다중 투표 방식으로 결합하여 원래의 훈련된 모델에 비해 향상된 분류 효율을 갖도록 하는 방법과 함께, 기존의 기계학습 중 앙상블 방법을 적용해 보고 그 결과를 확인하였다. 알고리즘을 훈련하고 검증하기 위해 PNUH(Pusan National University Hospital) 데이터셋을 이용하였다. 데이터셋에는 정상음성과 양성종양 및 악성 종양의 음성 데이터가 포함되어 있다. 실험에서는 정상 및 양성 종양과 악성종양을 구분하는 시도를 하였다. 실험결과 random forest 방법이 가장 우수한 앙상블 방법으로 나타났으며 85%의 식별률을 보였다.

Deep Learning을 기반으로 한 Feature Extraction 알고리즘의 분석 (Analysis of Feature Extraction Algorithms Based on Deep Learning)

  • 김경태;이용환;김영섭
    • 반도체디스플레이기술학회지
    • /
    • 제19권2호
    • /
    • pp.60-67
    • /
    • 2020
  • Recently, artificial intelligence related technologies including machine learning are being applied to various fields, and the demand is also increasing. In particular, with the development of AR, VR, and MR technologies related to image processing, the utilization of computer vision based on deep learning has increased. The algorithms for object recognition and detection based on deep learning required for image processing are diversified and advanced. Accordingly, problems that were difficult to solve with the existing methodology were solved more simply and easily by using deep learning. This paper introduces various deep learning-based object recognition and extraction algorithms used to detect and recognize various objects in an image and analyzes the technologies that attract attention.