• Title/Summary/Keyword: CNN Algorithm

Search Result 482, Processing Time 0.039 seconds

Object Tracking using Feature Map from Convolutional Neural Network (컨볼루션 신경망의 특징맵을 사용한 객체 추적)

  • Lim, Suchang;Kim, Do Yeon
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.126-133
    • /
    • 2017
  • The conventional hand-crafted features used to track objects have limitations in object representation. Convolutional neural networks, which show good performance results in various areas of computer vision, are emerging as new ways to break through the limitations of feature extraction. CNN extracts the features of the image through layers of multiple layers, and learns the kernel used for feature extraction by itself. In this paper, we use the feature map extracted from the convolution layer of the convolution neural network to create an outline model of the object and use it for tracking. We propose a method to adaptively update the outline model to cope with various environment change factors affecting the tracking performance. The proposed algorithm evaluated the validity test based on the 11 environmental change attributes of the CVPR2013 tracking benchmark and showed excellent results in six attributes.

Implementation of Fish Detection Based on Convolutional Neural Networks (CNN 기반의 물고기 탐지 알고리즘 구현)

  • Lee, Yong-Hwan;Kim, Heung-Jun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.3
    • /
    • pp.124-129
    • /
    • 2020
  • Autonomous underwater vehicle makes attracts to many researchers. This paper proposes a convolutional neural network (CNN) based fish detection method. Since there are not enough data sets in the process of training, overfitting problem can be occurred in deep learning. To solve the problem, we apply the dropout algorithm to simplify the model. Experimental result showed that the implemented method is promising, and the effectiveness of identification by dropout approach is highly enhanced.

A Tracking-by-Detection System for Pedestrian Tracking Using Deep Learning Technique and Color Information

  • Truong, Mai Thanh Nhat;Kim, Sanghoon
    • Journal of Information Processing Systems
    • /
    • v.15 no.4
    • /
    • pp.1017-1028
    • /
    • 2019
  • Pedestrian tracking is a particular object tracking problem and an important component in various vision-based applications, such as autonomous cars and surveillance systems. Following several years of development, pedestrian tracking in videos remains challenging, owing to the diversity of object appearances and surrounding environments. In this research, we proposed a tracking-by-detection system for pedestrian tracking, which incorporates a convolutional neural network (CNN) and color information. Pedestrians in video frames are localized using a CNN-based algorithm, and then detected pedestrians are assigned to their corresponding tracklets based on similarities between color distributions. The experimental results show that our system is able to overcome various difficulties to produce highly accurate tracking results.

Lost gamma source detection algorithm based on convolutional neural network

  • Fathi, Atefeh;Masoudi, S. Farhad
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3764-3771
    • /
    • 2021
  • Based on the convolutional neural network (CNN), a novel technique is investigated for lost gamma source detection in a room. The CNN is trained with the result of a GEANT4 simulation containing a gamma source inside a meshed room. The dataset for the training process is the deposited energy in the meshes of different n-step paths. The neural network is optimized with parameters such as the number of input data and path length. Based on the proposed method, the place of the gamma source can be recognized with reasonable accuracy without human intervention. The results show that only by 5 measurements of the energy deposited in a 5-step path, (5 sequential points 50 cm apart within 1600 meshes), the gamma source location can be estimated with 94% accuracy. Also, the method is tested for the room geometry containing the interior walls. The results show 90% accuracy with the energy deposition measurement in the meshes of a 5-step path.

Implementation of Low-cost Autonomous Car for Lane Recognition and Keeping based on Deep Neural Network model

  • Song, Mi-Hwa
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.210-218
    • /
    • 2021
  • CNN (Convolutional Neural Network), a type of deep learning algorithm, is a type of artificial neural network used to analyze visual images. In deep learning, it is classified as a deep neural network and is most commonly used for visual image analysis. Accordingly, an AI autonomous driving model was constructed through real-time image processing, and a crosswalk image of a road was used as an obstacle. In this paper, we proposed a low-cost model that can actually implement autonomous driving based on the CNN model. The most well-known deep neural network technique for autonomous driving is investigated and an end-to-end model is applied. In particular, it was shown that training and self-driving on a simulated road is possible through a practical approach to realizing lane detection and keeping.

Particle Filter Based Robust Multi-Human 3D Pose Estimation for Vehicle Safety Control (차량 안전 제어를 위한 파티클 필터 기반의 강건한 다중 인체 3차원 자세 추정)

  • Park, Joonsang;Park, Hyungwook
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.3
    • /
    • pp.71-76
    • /
    • 2022
  • In autonomous driving cars, 3D pose estimation can be one of the effective methods to enhance safety control for OOP (Out of Position) passengers. There have been many studies on human pose estimation using a camera. Previous methods, however, have limitations in automotive applications. Due to unexplainable failures, CNN methods are unreliable, and other methods perform poorly. This paper proposes robust real-time multi-human 3D pose estimation architecture in vehicle using monocular RGB camera. Using particle filter, our approach integrates CNN 2D/3D pose measurements with available information in vehicle. Computer simulations were performed to confirm the accuracy and robustness of the proposed algorithm.

Design and Implementation of a Body Fat Classification Model using Human Body Size Data

  • Taejun Lee;Hakseong Kim;Hoekyung Jung
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.2
    • /
    • pp.110-116
    • /
    • 2023
  • Recently, as various examples of machine learning have been applied in the healthcare field, deep learning technology has been applied to various tasks, such as electrocardiogram examination and body composition analysis using wearable devices such as smart watches. To utilize deep learning, securing data is the most important procedure, where human intervention, such as data classification, is required. In this study, we propose a model that uses a clustering algorithm, namely, the K-means clustering, to label body fat according to gender and age considering body size aspects, such as chest circumference and waist circumference, and classifies body fat into five groups from high risk to low risk using a convolutional neural network (CNN). As a result of model validation, accuracy, precision, and recall results of more than 95% were obtained. Thus, rational decision making can be made in the field of healthcare or obesity analysis using the proposed method.

Deep Learning-Based Chest X-ray Corona Diagnostic Algorithm (딥러닝 기반 흉부엑스레이 코로나 진단 알고리즘)

  • Kim, June-Gyeom;Seo, Jin-Beom;Cho, Young-Bok
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.73-74
    • /
    • 2021
  • 코로나로 인해 X-ray, CT, MRI와 같은 의료영상 분야에서 딥러닝을 많이 접목시키고 있다. 간단히 접할 수 있는 X-ray 영상으로 코로나 진단을 위해 CNN, R-CNN 등과 같은 영상 딥러닝 분야에서 많은 연구가 진행되고 있다. 의료영상 기반 딥러닝 학습은 바이오마커를 정확히 찾아내고, 최소한의 손실률과 높은 정확도를 필요로한다, 따라서 본 논문에서는 높은 정확도를 위한 학습 모델을 선정하고 실험을 진행하였다.

  • PDF

CNN-based watermarking processor design optimization method (CNN기반의 워터마킹 프로세서 설계 최적화 방법)

  • Kang, Ji-Won;Lee, Jae-Eun;Seo, Young-Ho;Kim, Dong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.644-645
    • /
    • 2021
  • In this paper, we propose a hardware structure of a watermarking processor based on deep learning technology to protect the intellectual property rights of ultra-high resolution digital images and videos. We propose an optimization methodology to implement a deep learning-based watermarking algorithm in hardware.

  • PDF

Image Search System Based on Object Detection Algorithm (객체 탐지 알고리즘 기반 이미지 검색 시스템)

  • Ji-Hyun Ahn;Seungmin Park
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.685-687
    • /
    • 2023
  • 최근에 이르러 인공신경망의 발전은 CNN(Convolutional Neural Network) 알고리즘을 활용한 이미지 분석 및 검색 시스템에 비약적인 기여를 하고 있다. 이는 이미지를 입력으로 받아 유사한 이미지를 찾아내는 기능을 향상시키는 연구를 촉진시켰다. 이와 같은 기술의 실용화는 다양한 분야를 포괄하며, 대표적으로 쇼핑몰의 상품검색, 검색 엔진 등에 응용되어 사용자의 편의를 제고하고 있다. 이에 따라 상품명에 대한 정보가 없는 상황에서도 단순한 이미지 정보를 통해 원하는 상품을 검색하는 것이 가능해졌다. 그러나, 실제 세계의 이미지에는 다양한 객체들이 복잡하게 혼재하고 있어 CNN 알고리즘 단독으로는 이미지 내부의 객체를 정확히 분석하고, 그 객체가 포함된 다른 이미지들을 효과적으로 검색하는데 한계가 있음이 인지되고 있다. 본 연구는 이러한 문제점을 개선하기 위해 객체 탐지 알고리즘을 적용하는 방안을 모색하였다. 본 논문에서는 객체 탐지 알고리즘을 통해 이미지 내부의 객체를 분석하고, 그에 따른 유사 객체를 포함하는 이미지를 찾아내는 전략을 제시한다. 이를 통해 이미지 분석 및 검색의 정확성을 더욱 향상시킬 수 있는 가능성을 제안한다.

  • PDF