• Title/Summary/Keyword: CNN 신경망

Search Result 540, Processing Time 0.029 seconds

A Smoke Segmentation Detection Method on U-net (U-net을 활용한 연기 Segmentation 탐지 기법)

  • Gwak, K.M.;DUONG, THUY TRANG;Rho, Young J.
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.81-83
    • /
    • 2021
  • 4차 산업 혁명과 함께 인공지능이 발전 하고 있다. 그 CNN 등 과 같은 이미지 관련 신경망들이 발전되어 가스 탐지와 같은 여러 분야에서 사용되고 있다. 하지만 가스 탐지는 Box 형태의 탐지가 일반적이고 Segmentation에 관한 연구는 있지만 연기와 같이 경계선이 불분명한 개체에 대해서는 연구가 미비하다. 본 논문에서는 Segmentation에 강력한 성능을 보이는 U-net을 활용하여 Box 형태가 아닌 Segmentation을 진행하여 픽셀단위로 연기를 탐지하고자 한다.

  • PDF

Neural Network based Pixel to Intra Prediction Mode Decision (신경망 기반 원본영상에서 화면 내 예측 모드로 변환)

  • Kim, Yangwoo;Lee, Yung-Lyul
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.671-672
    • /
    • 2020
  • VVC(Versertile Video Codec)의 화면 내 예측은 인코더에서 영상을 적절하게 사각형 블록으로 분할하고, 블록 주변의 먼저 재구성된 참조샘플들을 이용하여 예측블록을 형성한다. 인코더는 화면 내 예측 모드에서 각 PU(Prediction Unit)에 대하여 MIP(Matrix-based weighted Intra Prediction) 적용 여부, MIP에서 matrix의 인덱스, MRL(Multi Reference Line)의 인덱스, DC/Planar/Angular 모드에 대한 최적모드를 고려하여 각 정보를 디코더로 전송하며 각 후보모드들의 압축효율을 비교하는 과정에서 높은 연산량을 요구한다. 본 논문에서는 이러한 모드 결정은 원본영상으로도 대략적인 결정이 가능하다는 전제를 가지고 NN(Nueral Netwrok)의 일종인 CNN(Convolutional Nerual Network)를 이용하여 복잡한 모드 결정 방법을 생략하는 방법을 제안한다.

  • PDF

Plant leaf area estimation using synthetic dataset and deep learning model (합성 데이터셋과 딥러닝 모델을 이용한 식물 엽면적 추정)

  • Suh, Hyun Kwon;Ahn, Juyeon;Park, Hyeonji
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.90-92
    • /
    • 2022
  • 이 논문에서는 합성된 애기장대 데이터셋을 활용하여 딸기의 엽면적을 추정할 수 있는 딥러닝 모델을 제안한다. 제안된 모델에서는 개별 잎 검출을 위하여 합성 데이터셋으로 학습된 Mask R-CNN 의 객체 검출 모델을 사용하였고, 이어 이미지 후처리 작업에 해당되는 모폴로지 연산의 침식 및 팽창, 픽셀 카운터를 통해 엽면적을 추정하였다. 각기 다른 역할을 수행하는 신경망 계층에 어텐션 메커니즘 적용하여 검출 성능의 향상과 검출 시간을 단축하였다. 제안된 모델은 딸기 데이터셋을 사용하지 않는 합성된 데이터셋만으로도 실제 온실에서 획득한 다양한 이미지에서의 딸기 엽면적을 추정하는 데에 우수한 성능을 보여준다.

  • PDF

A Study on Design Space Exploration on AI accelerator (AI 가속기 설계 영역 탐색에 대한 연구)

  • Lee, Dong-Ju;Paek, Yun-Heung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.535-537
    • /
    • 2022
  • AI 가속기는 머신 러닝 및 딥 러닝을 포함한 인공 지능 및 기계 학습 응용 프로그램의 연산을 더 빠르게 수행하도록 설계된 일종의 하드웨어 가속기 또는 컴퓨터 시스템이다. 가속기를 설계하기 위해선 설계 영역 탐색(Design Space Exploration)을 하여야 하고 여러 인공지능 중에서도 합성 곱 신경망(CNN)에 대한 설계 영역 탐색을 소개한다.

Deep Clustering Based on Vision Transformer(ViT) for Images (이미지에 대한 비전 트랜스포머(ViT) 기반 딥 클러스터링)

  • Hyesoo Shin;Sara Yu;Ki Yong Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.363-365
    • /
    • 2023
  • 본 논문에서는 어텐션(Attention) 메커니즘을 이미지 처리에 적용한 연구가 진행되면서 등장한 비전 트랜스포머 (Vision Transformer, ViT)의 한계를 극복하기 위해 ViT 기반의 딥 클러스터링(Deep Clustering) 기법을 제안한다. ViT는 완전히 트랜스포머(Transformer)만을 사용하여 입력 이미지의 패치(patch)들을 벡터로 변환하여 학습하는 모델로, 합성곱 신경망(Convolutional Neural Network, CNN)을 사용하지 않으므로 입력 이미지의 크기에 대한 제한이 없으며 높은 성능을 보인다. 그러나 작은 데이터셋에서는 학습이 어렵다는 단점이 있다. 제안하는 딥 클러스터링 기법은 처음에는 입력 이미지를 임베딩 모델에 통과시켜 임베딩 벡터를 추출하여 클러스터링을 수행한 뒤, 클러스터링 결과를 임베딩 벡터에 반영하도록 업데이트하여 클러스터링을 개선하고, 이를 반복하는 방식이다. 이를 통해 ViT 모델의 일반적인 패턴 파악 능력을 개선하고 더욱 정확한 클러스터링 결과를 얻을 수 있다는 것을 실험을 통해 확인하였다.

Residual Blocks-Based Convolutional Neural Network for Age, Gender, and Race Classification (연령, 성별, 인종 구분을 위한 잔차블록 기반 컨볼루션 신경망)

  • Khasanova Nodira Gayrat Kizi;Bong-Kee Sin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.568-570
    • /
    • 2023
  • The problem of classifying of age, gender, and race images still poses challenges. Despite deep and machine learning strides, convolutional neural networks (CNNs) remain pivotal in addressing these issues. This paper introduces a novel CNN-based approach for accurate and efficient age, gender, and race classification. Leveraging CNNs with residual blocks, our method enhances learning while minimizing computational complexity. The model effectively captures low-level and high-level features, yielding improved classification accuracy. Evaluation of the diverse 'fair face' dataset shows our model achieving 56.3%, 94.6%, and 58.4% accuracy for age, gender, and race, respectively.

Turtle Neck Syndrome Posture Correction Service Using CNN-based Learning Model (CNN기반의 학습모델을 활용한 거북목 증후군 자세 교정 시스템)

  • Han, Ji-Ye;Park, Jin-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.7
    • /
    • pp.47-55
    • /
    • 2020
  • Along with the increased use of smart devices, the incidence of turtle neck syndrome among modern people has increased. Turtle neck syndrome is a posture in which the head is forward compared to the torso due to longer front muscles in the neck and shorter upper muscles, and it is more effective to fix the usual posture habits than surgery or medication. Thus, in this paper, a system is proposed to detect and warn posture that can cause turtle neck syndrome in real time. Image data of correct posture and turtle neck posture are collected to create a CNN-based learning model. Using only the webcam(Built-in camera), the sitting position that enters the camera is verified in real time through the learning model, and if it is a turtle neck position, it generates a warning sound and induces the correct posture. The system can induce people to correct their usual posture habits to treat turtle neck syndrome and prevent more serious diseases such as neck discs.

Lip Reading Method Using CNN for Utterance Period Detection (발화구간 검출을 위해 학습된 CNN 기반 입 모양 인식 방법)

  • Kim, Yong-Ki;Lim, Jong Gwan;Kim, Mi-Hye
    • Journal of Digital Convergence
    • /
    • v.14 no.8
    • /
    • pp.233-243
    • /
    • 2016
  • Due to speech recognition problems in noisy environment, Audio Visual Speech Recognition (AVSR) system, which combines speech information and visual information, has been proposed since the mid-1990s,. and lip reading have played significant role in the AVSR System. This study aims to enhance recognition rate of utterance word using only lip shape detection for efficient AVSR system. After preprocessing for lip region detection, Convolution Neural Network (CNN) techniques are applied for utterance period detection and lip shape feature vector extraction, and Hidden Markov Models (HMMs) are then used for the recognition. As a result, the utterance period detection results show 91% of success rates, which are higher performance than general threshold methods. In the lip reading recognition, while user-dependent experiment records 88.5%, user-independent experiment shows 80.2% of recognition rates, which are improved results compared to the previous studies.

Online Human Tracking Based on Convolutional Neural Network and Self Organizing Map for Occupancy Sensors (점유 센서를 위한 합성곱 신경망과 자기 조직화 지도를 활용한 온라인 사람 추적)

  • Gil, Jong In;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.23 no.5
    • /
    • pp.642-655
    • /
    • 2018
  • Occupancy sensors installed in buildings and households turn off the light if the space is vacant. Currently PIR(pyroelectric infra-red) motion sensors have been utilized. Recently, the researches using camera sensors have been carried out in order to overcome the demerit of PIR that cannot detect stationary people. The detection of moving and stationary people is a main functionality of the occupancy sensors. In this paper, we propose an on-line human occupancy tracking method using convolutional neural network (CNN) and self-organizing map. It is well known that a large number of training samples are needed to train the model offline. To solve this problem, we use an untrained model and update the model by collecting training samples online directly from the test sequences. Using videos capurted from an overhead camera, experiments have validated that the proposed method effectively tracks human.

An Authentic Certification System of a Printed Color QR Code based on Convolutional Neural Network (인쇄된 컬러 QR코드의 합성곱 신경망 알고리즘에 의한 진위 판정 시스템)

  • Choi, Do-young;Kim, Jin-soo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.3
    • /
    • pp.21-30
    • /
    • 2020
  • With the widespread of smartphones, the Quick response (QR) code became one of the most popular codes. In this paper, a new type of QR code is proposed to increase the storage capacities and also to contain private information by changing the colors and the shape of patterns in the codes. Then, for a variety of applications of the printed QR codes, this paper proposes an efficient authentic certification system, which is built on an conventional CNN (Convolutional neural network) architecture - VGGNet and classifies authentic or counterfeit with smartphones, easily. For authentic codes, the proposed system extracts the embedded private information. Through practical experiments with a printed QR code, it is shown that the proposed system can classify authentic or counterfeit code, perfectly, and also, are useful for extracting private information.