• 제목/요약/키워드: CNN 신경망

검색결과 540건 처리시간 0.021초

Contactless User Identification System using Multi-channel Palm Images Facilitated by Triple Attention U-Net and CNN Classifier Ensemble Models

  • Kim, Inki;Kim, Beomjun;Woo, Sunghee;Gwak, Jeonghwan
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권3호
    • /
    • pp.33-43
    • /
    • 2022
  • 본 논문에서는 기존의 스마트폰 카메라 센서를 사용하여 비접촉식 손바닥 기반 사용자 식별 시스템을 구축하기 위해 Attention U-Net 모델과 사전 훈련된 컨볼루션 신경망(CNN)이 있는 다채널 손바닥 이미지를 이용한 앙상블 모델을 제안한다. Attention U-Net 모델은 손바닥(손가락 포함), 손바닥(손바닥 미포함) 및 손금을 포함한 관심 영역을 추출하는 데 사용되며, 이는 앙상블 분류기로 입력되는 멀티채널 이미지를 생성하기 위해 결합 된다. 생성된 데이터는 제안된 손바닥 정보 기반 사용자 식별 시스템에 입력되며 사전 훈련된 CNN 모델 3개를 앙상블 한 분류기를 사용하여 클래스를 예측한다. 제안된 모델은 각각 98.60%, 98.61%, 98.61%, 98.61%의 분류 정확도, 정밀도, 재현율, F1-Score를 달성할 수 있음을 입증하며, 이는 저렴한 이미지 센서를 사용하고 있음에도 불구하고 제안된 모델이 효과적이라는 것을 나타낸다. 본 논문에서 제안하는 모델은 COVID-19 펜데믹 상황에서 기존 시스템에 비하여 높은 안전성과 신뢰성으로 대안이 될 수 있다.

소량 및 불균형 능동소나 데이터세트에 대한 딥러닝 기반 표적식별기의 종합적인 분석 (Comprehensive analysis of deep learning-based target classifiers in small and imbalanced active sonar datasets)

  • 김근환;황용상;신성진;김주호;황수복;추영민
    • 한국음향학회지
    • /
    • 제42권4호
    • /
    • pp.329-344
    • /
    • 2023
  • 본 논문에서는 소량 및 불균형 능동소나 데이터세트에 적용된 다양한 딥러닝 기반 표적식별기의 일반화 성능을 종합적으로 분석하였다. 서로 다른 시간과 해역에서 수집된 능동소나 실험 데이터를 이용하여 두 가지 능동소나 데이터세트를 생성하였다. 데이터세트의 각 샘플은 탐지 처리 이후 탐지된 오디오 신호로부터 추출된 시간-주파수 영역 이미지이다. 표적식별기의 신경망 모델은 다양한 구조를 가지는 22개의 Convolutional Neural Networks(CNN) 모델을 사용하였다. 실험에서 두 가지 데이터세트는 학습/검증 데이터세트와 테스트 데이터세트로 번갈아 가며 사용되었으며, 표적식별기 출력의 변동성을 계산하기 위해 학습/검증/테스트를 10번 반복하고 표적식별 성능을 분석하였다. 이때 학습을 위한 초매개변수는 베이지안 최적화를 이용하여 최적화하였다. 실험 결과 본 논문에서 설계한 얕은 층을 가지는 CNN 모델이 대부분의 깊은 층을 가지는 CNN 모델보다 견실하면서 우수한 일반화 성능을 가지는 것을 확인하였다. 본 논문은 향후 딥러닝 기반 능동소나 표적식별 연구에 대한 방향성을 설정할 때 유용하게 사용될 수 있다.

시공간 템플릿과 컨볼루션 신경망을 사용한 깊이 영상 기반의 사람 행동 인식 (Depth Image-Based Human Action Recognition Using Convolution Neural Network and Spatio-Temporal Templates)

  • 음혁민;윤창용
    • 전기학회논문지
    • /
    • 제65권10호
    • /
    • pp.1731-1737
    • /
    • 2016
  • In this paper, a method is proposed to recognize human actions as nonverbal expression; the proposed method is composed of two steps which are action representation and action recognition. First, MHI(Motion History Image) is used in the action representation step. This method includes segmentation based on depth information and generates spatio-temporal templates to describe actions. Second, CNN(Convolution Neural Network) which includes feature extraction and classification is employed in the action recognition step. It extracts convolution feature vectors and then uses a classifier to recognize actions. The recognition performance of the proposed method is demonstrated by comparing other action recognition methods in experimental results.

심층 컨벌루션 신경망 기반의 실시간 드론 탐지 알고리즘 (Convolutional Neural Network-based Real-Time Drone Detection Algorithm)

  • 이동현
    • 로봇학회논문지
    • /
    • 제12권4호
    • /
    • pp.425-431
    • /
    • 2017
  • As drones gain more popularity these days, drone detection becomes more important part of the drone systems for safety, privacy, crime prevention and etc. However, existing drone detection systems are expensive and heavy so that they are only suitable for industrial or military purpose. This paper proposes a novel approach for training Convolutional Neural Networks to detect drones from images that can be used in embedded systems. Unlike previous works that consider the class probability of the image areas where the class object exists, the proposed approach takes account of all areas in the image for robust classification and object detection. Moreover, a novel loss function is proposed for the CNN to learn more effectively from limited amount of training data. The experimental results with various drone images show that the proposed approach performs efficiently in real drone detection scenarios.

카오스 신경망을 이용한 기계적 서보 시스템의 경로 제어 (Contour Conrtol of Mechatronic Servo Systems Using Chaotic Neural Networks)

  • 최원영;김상희;최한고;채창현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 B
    • /
    • pp.400-402
    • /
    • 1997
  • This paper investigates the direct and adaptive control of mechatronic servo systems using modified chaotic neural networks (CNNs). For the performance evaluation of the proposed neural networks, we simulate the trajectory control of the X-Y table with direct control strategies. The CNN based controller demonstrates accurate tracking of the planned path and also shows superior performance on convergence and final error comparing with recurrent neural network(RNN) controller.

  • PDF

Prefilter 형태의 카오틱 신경망 속도보상기를 이용한 로봇 제어기 설계 (Prefilter Type Velocity Compensating Robot Controller Design using Modified Chaotic Neural Networks)

  • 홍수동;최운하;김상희
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제50권4호
    • /
    • pp.184-191
    • /
    • 2001
  • This paper proposes a prefilter type velocity compensating control system using modified chaotic neural networks for the trajectory control of robotic manipulator. Since the structure of modified chaotic neural networks(MCNN) and neurons have highly nonlinear dynamic characteristics, MCNN can show the robust characteristics for controlling highly nonlinear dynamics like robotic manipulators. For its application, the trajectory controller of the three-axis robot manipulator is designed by MCNN. The MCNN controller acts as the compensator of the PD controller. Simulation results show that learning error decrease drastically via on-line learning and the performance is excellent. The MCNN controller showed much better control performance and shorter calculation time compared to the RNN controller, Another advantage of the proposed controller could by attached to conventional robot controller without hardware changes.

  • PDF

X-선 영상과 합성곱 신경망을 이용한 육류 내의 바늘 검출 (Detection of Needles in Meat using X-Ray Images and Convolution Neural Networks)

  • 안진호;장원재;이원희;김정도
    • 센서학회지
    • /
    • 제29권6호
    • /
    • pp.427-432
    • /
    • 2020
  • The most lethal foreign body in meat is a needle, and X-ray images are used to detect it. However, because the difference in thickness and fat content is severe depending on the type of meat and the part of the meat, the shade difference and contrast appear severe. This problem causes difficulty in automatic classification. In this paper, we propose a method for generating training patterns by efficient pre-processing and classifying needles in meat using a convolution neural network. Approximately 24000 training patterns and 4000 test patterns were used to verify the proposed method, and an accuracy of 99.8% was achieved.

딥러닝 기법을 이용한 가짜뉴스 탐지 (Fake news detection using deep learning)

  • 이동호;이정훈;김유리;김형준;박승면;양유준;신웅비
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 춘계학술발표대회
    • /
    • pp.384-387
    • /
    • 2018
  • SNS가 급속도로 확산되며 거짓 정보를 언론으로 위장한 형태인 가짜뉴스는 큰 사회적 문제가 되었다. 본 논문에서는 이를 해결하기 위해 한글 가짜뉴스 탐지를 위한 딥러닝 모델을 제시한다. 기존 연구들은 영어에 적합한 모델들을 제시하고 있으나, 한글은 같은 의미라도 더 짧은 문장으로 표현 가능해 딥러닝을 하기 위한 특징수가 부족하여 깊은 신경망을 운용하기 어렵다는 점과, 형태소 중의성으로 인한 의미 분석의 어려움으로 인해 기존 오델들을 적용하기에는 한계가 있다. 이를 해결하기 위해 얕은 CNN 모델과 음절 단위로 학습된 단어 임베딩 모델인 'Fasttext'를 활용하여 시스템을 구현하고, 이를 학습시켜 검증하였다.

싱글숏 멀티박스 검출기에서 객체 검출을 위한 가속 회로 인지형 가지치기 기반 합성곱 신경망 기법 (Convolutional Neural Network Based on Accelerator-Aware Pruning for Object Detection in Single-Shot Multibox Detector)

  • Kang, Hyeong-Ju
    • 한국정보통신학회논문지
    • /
    • 제24권1호
    • /
    • pp.141-144
    • /
    • 2020
  • Convolutional neural networks (CNNs) show high performance in computer vision tasks including object detection, but a lot of weight storage and computation is required. In this paper, a pruning scheme is applied to CNNs for object detection, which can remove much amount of weights with a negligible performance degradation. Contrary to the previous ones, the pruning scheme applied in this paper considers the base accelerator architecture. With the consideration, the pruned CNNs can be efficiently performed on an ASIC or FPGA accelerator. Even with the constrained pruning, the resulting CNN shows a negligible degradation of detection performance, less-than-1% point degradation of mAP on VOD0712 test set. With the proposed scheme, CNNs can be applied to objection dtection efficiently.

객체 검출을 위한 트랜스포머와 공간 피라미드 풀링 기반의 YOLO 네트워크 (Transformer and Spatial Pyramid Pooling based YOLO network for Object Detection)

  • 권오준;정제창
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2021년도 추계학술대회
    • /
    • pp.113-116
    • /
    • 2021
  • 일반적으로 딥러닝 기반의 객체 검출(Object Detection)기법은 합성곱 신경망(Convolutional Neural Network, CNN)을 통해 입력된 영상의 특징(Feature)을 추출하여 이를 통해 객체 검출을 수행한다. 최근 자연어 처리 분야에서 획기적인 성능을 보인 트랜스포머(Transformer)가 영상 분류, 객체 검출과 같은 컴퓨터 비전 작업을 수행하는데 있어 경쟁력이 있음이 드러나고 있다. 본 논문에서는 YOLOv4-CSP의 CSP 블록을 개선한 one-stage 방식의 객체 검출 네트워크를 제안한다. 개선된 CSP 블록은 트랜스포머(Transformer)의 멀티 헤드 어텐션(Multi-Head Attention)과 CSP 형태의 공간 피라미드 풀링(Spatial Pyramid Pooling, SPP) 연산을 기반으로 네트워크의 Backbone과 Neck에서의 feature 학습을 돕는다. 본 실험은 MSCOCO test-dev2017 데이터 셋으로 평가하였으며 제안하는 네트워크는 YOLOv4-CSP의 경량화 모델인 YOLOv4s-mish에 대하여 평균 정밀도(Average Precision, AP)기준 2.7% 향상된 검출 정확도를 보인다.

  • PDF