• Title/Summary/Keyword: CNC lathe machine

Search Result 61, Processing Time 0.026 seconds

Effect of Cutting Conditions on Surface Roughness in CNC Lathe C-axis Milling Cutting (CNC선반 C축 밀링가공에서 표면 거칠기에 미치는 절삭조건의 영향)

  • Shin, Kuk-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.110-115
    • /
    • 2012
  • For domestic aircraft industry, not mass production of components is limited, small production scale of the order is made by part because many kinds of hundreds of thousands of kinds of small quantity batch production system are taking. But the high reliability and stability are required during the processing because they require high precision parts are required. It is found that when C-axis rotation speed was increased, the diameter of the cutting tool decreased with increasing surface roughness, while the turn-mail feed rate was increased with increasing the surface roughness.

A Study on the Standard Roughness for SUS440C Internal Diameter Machining Using a CNC Automatic Lathe (CNC 자동선반을 이용한 SUS440C 안지름 가공에 대한 표준 거칠기에 관한 연구)

  • Chul-Woong Choi;Sik-Won Choi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.4_2
    • /
    • pp.605-613
    • /
    • 2023
  • The multi-axis combined machining technology has enabled combined machining, which was difficult. However, the reality is that manufacturing costs are rising due to expensive equipment and there is a shortage of machine operation engineers. The purpose of this research is to present the optimum cutting conditions for the surface roughness when processing the inner diameter of SUS440C, which is an egg material, using a CNC automatic lathe. As a result of measuring the surface roughness, dry machining was the best at Ra0.481㎛ at a spindle speed of 4,000rpm, a feed rate of 0.05rev/min, and a cutting depth of 0.3mm. In wet machining, the highest value was Ra0.317 at a spindle speed of 2,000 rpm, a feed rate of 0.05 rev/min, and a cutting depth of 0.2 mm. The lower the feed rate, the better surface roughness appears. It was found that the feed rate had more influence than the number of revolutions and depth of cut.

A design of a Korean automatic programming system and a graphic debugger for CNC lathe using IBM-PC (IBM-PC를 이용한 CNC 선반용 한글자동프로그래밍 시스템과 그래픽디버거의 설계)

  • 고명삼;김규식;성광제
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.414-418
    • /
    • 1986
  • Although the use of NC machine is increasing in modern industry, unfamiliarities of the NC program syntax do not allow us to program it easily. So, automatic programming systems, such as APT, COMPACT, CL, were developed to help the uninitiated to write NC program easily. In this research, Korean Automatic Programming System for 2-axis NC lathe is developed, by which NC program is easily programmed using Korean letters. In addition, Graphic Debugger for 2-axis NC lathe is developed for debugging the NC program error and animating the cutting process. The above systems are run on the IBM-PC/XT.

  • PDF

A Study on Application of Finite Element Method to the Impact test for the Safety of the Splash Guard of a CNC Machine Tool (CNC 공작기계 스프레쉬 가드의 안전성을 위한 충격 시험에 대한 유한요소법 적용에 관한 연구)

  • Kim, Tae Won;Choi, Jin Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.5
    • /
    • pp.782-788
    • /
    • 2013
  • This study addresses the issue of safety of the splash guard of a computer numerical control (CNC) machine tool at the design stage. As an impact test for evaluating safety requirements such as strength under the safety regulation is an expensive and iterative task, it is necessary to develop a new method to minimize the task of the impact test for development of the machine tool. In this study, explicit finite element method was adopted for replacement of the impact test of the splash guard of a machine tool at the design stage. A finite element model was developed for implementing the impact test on an actual vertical CNC lathe and then produced the analysis including plastic strain and deformation to enable the safety of its splash guard to be determined. The analysis results demonstrated that the finite element method can be applied to safety evaluation for design of the splash guard of a CNC machine tool.

Development of a Cutting Force Monitoring System for a CNC Lathe (CNC 선반에서의 절삭력 감지 시스템 개발)

  • Heo, Geon-Su;Lee, Gang-Gyu;Kim, Jae-Ok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.219-225
    • /
    • 1999
  • Monitoring of the cutting force signals in cutting process has been well emphasized in machine tool communities. Although the cutting force can be directly measured by a tool dynamometer, this method is not always feasible because of high cost and limitations in setup. In this paper an indirect cutting force monitoring system is developed so that the cutting force in turning process is estimated based on a AC spindle drive model. This monitoring system considers the cutting force as a disturbance input to the spindle drive and estimates the cutting force based on the inverse dynamic model. The inverse dynamic model represents the dynamic relation between the cutting force, the motor torque and the motor power. The proposed monitoring system is realized on a CNC lathe and its estimation performance is evaluated experimentally.

  • PDF

DNC System Conversion of CNC Machine Tools for FMS (FMS를 위한 CNC 공작기계의 DNC 시스템 변환)

  • Bae, Yong-Hwan;Oh, Sang-Yeob
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.2
    • /
    • pp.207-213
    • /
    • 2004
  • This paper describes the development of Behind-Tape-Reader (BTR) type DNC system using CYBER 180-830 as a central computer and IBM PC-AT cell control computer and NC lathe with FANUC 5T NC controller. In this system, the connection between central computer and cell control computer is done via RS-232C serial interface board, and that between cell control computer and FANUC 5T controller is done via parallel interface board. The software consists of two module, central computer communication module for NC program downloading and status uploading, NC machine running module for NC operating.

  • PDF

Study on Spindle Motor's Power-Factor and Frictional Characteristics For Cutting Force Monitoring in a CNC Machine (CNC 공작기계의 절삭력 감지를 위한 주축모터의 역률 및 마찰특성에 관한 연구)

  • 홍성함;이병휘;허건수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.141-146
    • /
    • 2002
  • Real-time monitoring and control of the cutting force is essential for unmanned cutting process. Although the cutting force can be measured directly using tool dynamometers, their implementation is not feasible in industry due to high cost. Alternative approach is the cutting force estimation based on spindle drive models, but it requires the knowledge of their characteristics with the spindle speed variation. This paper investigates the power-factor and frictional characteristics of three-phase induction motors and determines its characteristics below and above the base speed, respectively. In order to realize the proposed cutting force monitoring system, a stand-alone DSP board was utilized. Its monitoring and control performance is evaluated in a CNC lathe.

  • PDF

The Optimization of Main and Sub Spindle′s Synchronous In Opening-CNC (개방형 CNC에서 주축과 서브 주축 동기를 위한 최적화 연구)

  • 김성현;윤강섭;이만형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.391-394
    • /
    • 2002
  • This paper introduces that the lathe optimize for main and sub spindle's synchronous in Opening-CNC. In view of optimal design, the mathematical modelling and the frequency domain analysis of spindle's system are performed. For the compensation of synchronous error in compounded manufacture process, the optimization method of motor drive's control parameter and the related parameter is proposed. By the experiment in prototype machines using the server/client program, the validity of the proposed method is verified.

  • PDF

Design of the Mechanical System for the Cylindrical Workpiece Inspection System (원통형 공작물 검사장치의 기계장치 설계)

  • Whang, Hyun-Seok;Kim, Gab-Soon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.2
    • /
    • pp.22-28
    • /
    • 2019
  • In this study, we describe the mechanical design of the cylindrical workpiece inspection system which that can inspect the workpiece machined in the CNC lathe. The workpiece automatic measuring device is composed of a workpiece aligning mechanism, a workpiece diameter measuring mechanism, and a workpiece height measuring mechanism. If the workpiece machined on the CNC lathe is placed on the pedestal of the cylindrical workpiece inspection system, the workpiece aligning mechanism moves the workpiece to the diameter-measuring position and the height- measuring positions, and the diameter-measuring mechanism and the height- measuring mechanisms sequentially measure the diameter and the height of the workpiece. The cylindrical workpiece inspection system was designed and manufactured. The characteristic experiment was conducted to confirm the operation of the machine tool of the cylindrical workpiece inspection system. As a The result of the characteristic test shows that, the workpiece automatic measuring device operated safely.

A Study on Balancing of High-speed Spindle of CNC Automatic Lathe (CNC 자동선반 고속 스핀들의 밸런싱에 관한 연구)

  • Kim, Tae-Jong;Koo, Ja-Ham;Lee, Shi-Bok;Kim, Moon-Saeng
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.11
    • /
    • pp.1214-1221
    • /
    • 2009
  • A high-speed spindle can be very sensitive to rotating mass unbalance which has harmful effect on many machine tools. Therefore, the balancing procedure to reduce vibration in rotating system is certainly needed for all high-speed spindles. So, balancing procedure was performed with a spindle-bearing system for CNC automatic lathe by using numerical procedure. The spindle is supported by the angular contact ball bearings and the motor rotor is fixed at the middle of spindle. The spindle-bearing system has been investigated using combined methodologies of finite elements and transfer matrices. The balancing was performed through influence coefficient method and the comparison was made by whirl responses between before balancing and after balancing. As a result, balancing of simple spindle model reduced whirl orbit magnitude in case of a completely assembled spindle model.