• 제목/요약/키워드: CNC controller

검색결과 150건 처리시간 0.024초

퍼지논리 제어에 의한 CNC 서보기구의 마찰보정에 관한 연구 (A Study on the Friction Compensation in CNC Servomechanisms by Fuzzy Logic Control)

  • 지성철
    • 한국정밀공학회지
    • /
    • 제15권9호
    • /
    • pp.56-67
    • /
    • 1998
  • This paper introduces a friction compensation fuzzy logic controller, which utilizes a rule-based approach. The paper explains the algorithm of the proposed controller and compares it with a conventional PID controller in simulations and experiments. For the experiments, the two control algorithms were implemented on a 3-axis milling machine in contour milling. These simulation and experimental analyses show that the proposed fuzzy logic controller has superior performance over conventional PID controllers In terms of part contour accuracy.

  • PDF

CNC-implemented Fault Diagnosis and Web-based Remote Services

  • Kim Dong Hoon;Kim Sun Ho;Koh Kwang Sik
    • Journal of Mechanical Science and Technology
    • /
    • 제19권5호
    • /
    • pp.1095-1106
    • /
    • 2005
  • Recently, the conventional controller of machine-tool has been increasingly replaced by the PC-based open architecture controller, which is independent of the CNC vendor and on which it is possible to implement user-defined application programs. This paper proposes CNC­implemented fault diagnosis and web-based remote services for machine-tool with open architecture CNC. The faults of CNC machine-tool are defined as the operational faults occupied by over $70{\%}$ of all faults. The operational faults are unpredictable as they occur without any warning. Two diagnostic models, the switching function and the step switching function, were proposed in order to diagnose faults efficiently. The faults were automatically diagnosed through the fault diagnosis system using the two diagnostic models. A suitable interface environment between CNC and developed application modules was constructed for the internal function of CNC. In addition, a suitable web environment was constructed for remote services. The web service functions, such as remote monitoring and remote control, were implemented, and their operability was tested through the web. The results obtained through this research could be a model of fault diagnosis and remote servicing for machine-tool with open architecture CNC.

Ubiquitous-Based Mobile Control and Monitoring of CNC Machines for Development of u-Machine

  • Kim Dong-Hoon;Song Jun-Yeob
    • Journal of Mechanical Science and Technology
    • /
    • 제20권4호
    • /
    • pp.455-466
    • /
    • 2006
  • This study was an attempt to control and monitor Computerized Numerical Controller (CNC) machines anywhere and anytime for the development of a ubiquitous machine (u-machine). With a Personal Digital Assistant (PDA) phone, the machine status and machining data of CNC machines can be monitored in wired and wireless environments, including the environments of IMT2000 and Wireless LAN. Moreover, CNC machines can be controlled anywhere and anytime. The concept of the anywhere-anytime controlling and monitoring of a manufacturing system was implemented in this study for the purpose of u-manufacturing and u-machines. In this concept, the communication between the CNC controller and the PDA phone was successfully performed anywhere and anytime for the real-time monitoring and control of CNC machines. In addition, the interface between the CNC controller and the developed application module was implemented by Object linking and embedding for Process Control (OPC) and shared CNC memory. For communication, the design of a server contents module within the target CNC was based on a TCP/IP. Furthermore, the client contents module within the PDA phone was designed with the aid of embedded c++ programming for mobile communication. For the interface, the monitoring data, such as the machine status, the machine running state, the name of the Numerical Control (NC) program, the alarm and the position of the stage axes, were acquired in real time from real machines with the aid of the OPC method and by sharing the CNC memory. The control data, such as the start, hold, emergency stop, reserved start and reserved stop, were also applied to the CNC domain of the real machine. CNC machines can therefore be controlled and monitored in real time, anywhere and anytime. Moreover, prompt notification from CNC machines to mobile phones, including cellular phones and PDA phones, can be automatically realized in emergencies.

소프트웨어 기반의 개방형 제어기에 대한 이해와 개발 (Understanding and Development of Software-based Open Architecture Controller)

  • 윤원수;김찬봉
    • 한국정밀공학회지
    • /
    • 제22권4호
    • /
    • pp.136-143
    • /
    • 2005
  • Open architecture controller (OAC) is well known technology in factory automation. To better understand the requirements of OAC, authors have discussed the OAC related topics with a number of control experts who represents different segments of the machining industry. There is no common concept that is accepted or used, however, the common ideas for OAC is the control system that is hardware independent, interchangeable, and easily scalable. This paper presents summary of the understaning and requirements of OAC. Based on the requirements of OAC, authors developed the software based PC-CNC. The main focus of the PC-CNC was on the user customization capability and open interface between control networks in manufacturing system. This paper introduces the developed PC-CNC briefly. In addition to introduction of the PC-CNC, to fill the gap between end users and vendors of OAC, this paper presents two applications using OAC. One is a remote monitoring system. The OPC (Ole for Process Control) standard interface was used to monitor the status of open architecture CNC across network. The other is the remote production management module for machine tools using standard database interface.

CNC에 실장한 고장진단 및 원격 서비스 시스템 (CNC Implemented Fault Diagnosis and Remote-Service System)

  • 김선호;김동훈;김도연;박영우;윤원수
    • 한국정밀공학회지
    • /
    • 제20권10호
    • /
    • pp.89-97
    • /
    • 2003
  • The faults diagnosis of machine tool, which is controlled by CNC(Computer Numerical Control) and PLC(Programmable Logic Controller), is generally based on ladder diagram of PLC because sequential controls for CNC and servo motor are mostly processed in PLC. However, when fault is occurred, a searching of logical relationship for fault reasons is required a lot of diagnosis experiences and times because PLC program has step structure. In this paper, FDS(Fault Diagnosis System) is developed and implemented to machine tool with open architecture controller in order to find the reason of fault fast and correctly. The diagnosed reasons for fault are remote serviced on web through developed RSS(Remote Service System). The operationability and usefulness of developed system are evaluated on specially manufactured machine tool with open architecture CNC. The results of this research can be the model of remote monitoring and fault diagnosis system of machine tool with open architecture CNC.

큰 외란이 존재하는 CNC 이송 구동계를 위한 적응 퍼지논리 제어기 (Self-Organizing Fuzzy Logic Controller for CNC Feed Drive Systems with Large Disturbances)

  • 지성철
    • 한국정밀공학회지
    • /
    • 제15권10호
    • /
    • pp.180-192
    • /
    • 1998
  • This paper introduces a new self-organizing fuzzy logic controller (SOFLC) for precision contour machining in the presence of large disturbances which adjusts both input and output membership functions simultaneously. The parameters of the proposed controller are self-tuned in real-time according to a continuous measurement of the performance of the controller itself and estimated disturbance values. The proposed controller as well as a conventional fuzzy logic controller and a PID controller were simulated and implemented on a 3-axis milling machine in contour milling. Both the simulations and experiments show that the self-organizing fuzzy logic controller has superior performance in terms of contour tracking accuracy compared with the other two controllers.

  • PDF

공작기계 운격감시를 위한 진단모델 (Diagnosis Model for Remote Monitoring of CNC Machine Tool)

  • 김선호;이은애;김동훈;한기상;권용찬
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.233-238
    • /
    • 2000
  • CNC machine tool is assembled by central processor, PLC(Programmable Logic Controller), and actuator. The sequential control of machine generally controlled by a PLC. The main fault occured at PLC in 3 control parts. In LC faults, operational fault is charged over 70%. This paper describes diagnosis model and data processing for remote monitoring and diagnosis system in machine tools with open architecture controller. Two diagnostic models based on the ladder diagram. Logical Diagnosis Model(LDM), Sequential Diagnosis Model(SDM), are proposed. Data processing structure is proposed ST(Structured Text) based on IEC1131-3. The faults from CNC are received message form open architecture controller and faults from PLC are gathered by sequential data.. To do this, CNC and PLC's logical and sequential data is constructed database.

  • PDF

개방형 수치제어 장치를 위한 범용 NURBS 보간기 (An universal NURBS interpolator for an architectured CNC controller)

  • 강성균
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.656-659
    • /
    • 1996
  • An universal NURBS interpolation for an open architectured CNC controller is proposed in order to unify internal data structure and algorithm of different interpolations such as linear, circular and spline, and to intelligently interface CAD database of the various workpiece contour. Furthermore, NURBS interpolation may result in better surface roughness and high speed machining due to the continuous generation of cutter movement. The mathematical manipulation of NURBS is presented and the practical implementation on the CNC controller of a lathe is discussed for real machining. The comparison between a computer design and workpieces machined on a lathe shows the feasibility of the NURBS interpolation format as an universal interpolation scheme.

  • PDF

An Integrated Approach to the Analysis and Design of a Three-Axis Cross-Coupling Control System

  • Jee, Sung-Chul;Lee, Hak-Chul
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제8권2호
    • /
    • pp.59-63
    • /
    • 2007
  • We propose a controller design analysis for a cross-coupling control system, which is essential for achieving high contouring accuracy in multi-axis CNC systems. The proposed analysis combines three axial controllers for each individual feed drive system together with a cross-coupling controller at the beginning of the design stage in an integrated manner. These two types of controllers used to be separately designed and analyzed since they have different control objectives. The proposed scheme is based on a mathematical formulation of a three-dimensional contour error model and includes a stability analysis for the overall control system and a performance analysis in terms of contouring and tracking accuracy at steady state. A computer simulation was used to demonstrate the validity of the proposed methodology. The performance variation was investigated under different operating conditions and controller gains, and a design range was elicited that met the given performance specifications. The results provide basic guidelines in systematic and comprehensive controller designs for multi-axis CNC systems. A cross-coupling control system was also implemented on a PC-based three-axis CNC testbed, and the experimental results confirmed the usefulness of the proposed control system in terms of contouring accuracy.