• 제목/요약/키워드: CNC Machining Tool

검색결과 247건 처리시간 0.026초

선반가공시 발생하는 채터 현상의 시뮬레이션에 관한 연구 (A Study on the Regenerative Chatter Simulation in Turning Operation)

  • 홍민성;김종민
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 추계학술대회(한국공작기계학회)
    • /
    • pp.19-25
    • /
    • 2001
  • In metal cutting, chatter is an unstable cutting phenomenon which is due to the interaction of the dynamics of the chip removal process and the structural dynamics of machine tool. When chatter occurs, it reduces tool life and results in poor surface roughness and low productivity of the machining process. In this study, the experiments have been conducted to investigate phenomenon of the chatter in CNC lathe without cutting fluid. In the experiments, two accelerometers were attached at the tail stock and tool holder and the signals were caught. In order to observe the effect of chatter on the surface roughness profiles, surface roughness profiles were generated under the ideal condition and the occurrence of the chatter based on the surface simulation model using surface-shaping system. Finally, the result of experiment and simulation have been compared.

  • PDF

알루미늄합금 절삭시 절삭성과 절삭조건의 상관성에 관한 연구 (A Study on the Correlation between Machinability and the Cutting Condition in Machining Aluminum Alloy)

  • 오석형
    • 한국기계가공학회지
    • /
    • 제3권4호
    • /
    • pp.56-62
    • /
    • 2004
  • Using NC or CNC machine tool, the unmanned automatic production system has been growing recently in the manufacturing field. Thus it is important to find out the machinability of cutting force, tool wear and surface roughness during the cutting process. It is necessary to find how to estimate the machinability for the effective cutting condition because of problem about cutting power, tool wear, cutting time and precision. This study was planned to discover the relations of tool wear by variations of roughness and derived to correlate the wear with the surface roughness on the cutting parameter(cutting force, flank wear, surface roughness, friction angle, shear angle, slenderness ratio) when the aluminum alloy was cut in turning.

  • PDF

선반가공시 채터로 인한 표면 형상의 시뮬레이션에 관한 연구 (Simulation of the Chatter Surface on the Turning Operation)

  • 홍민성;김종민
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 추계학술대회 논문집
    • /
    • pp.174-179
    • /
    • 2002
  • In metal cutting, Chatter is an unstable cutting phenomenon which is due to the interaction of the dynamics of the chip removal process and the structural dynamics of machine tool. when vibration and chatter occurs, it reduces tool life, results in poor surface roughness and low productivity of the machining process. In this study, the experiments were conducted in CNC lathe without cutting fluid to investigated phenomenon of the chatter, In the experiments, accelerometers were set up at the tail stock and tool holder and the signals were picked up. In order to observe the effect of chatter on the surface roughness profiles, in this paper, surface roughness profiles will be generated under the ideal condition and the occurrence of the chatter based on the surface simulation model.

  • PDF

Estimation of the Cutting Torque Without a Speed Sensor During CNC Turning

  • Kwon, Won-Tae;Hong, Ik-Jun
    • Journal of Mechanical Science and Technology
    • /
    • 제19권12호
    • /
    • pp.2205-2212
    • /
    • 2005
  • In this paper, the cutting torque of a CNC machine tool during machining is monitored through the internet. To estimate the cutting torque precisely, the spindle driving system is divided into two parts: electrical induction motor part and mechanical part. A magnetized current is calculated from the measured three-phase stator currents and used for the total torque estimation generated by a spindle motor. Slip angular velocity is calculated from the magnetized current directly, which gets rid of the necessity of a spindle speed sensor. Since the frictional torque changes according to the cutting torque and the spindle rotational speed, an experiment is adopted to obtain the frictional torque as a function of the cutting torque and the spindle rotation speed. Then the cutting torque can be calculated by solving a $2^{nd}$ order difference equation at a given cutting condition. A graphical programming method is used to implement the torque monitoring system developed in this study to the computer and at the same time monitor the torque of the spindle motor in real time through the internet. The cutting torque of the CNC lathe is estimated well within an about $3\%$ error range in average in various cutting conditions.

선반에서의 채터에 의한 가공 표면 시뮬레이션 (Generation of Turned Surface by Chattering)

  • 홍민성;김종민
    • 한국공작기계학회논문집
    • /
    • 제12권3호
    • /
    • pp.25-30
    • /
    • 2003
  • In metal cutting chatter is the unstable cutting phenomenon which caused by the interaction between the dynamics of the chip removal process and the structural dynamics of machine tool. When the vibration and chatter on, it reduces tool life and results in poor surface roughness and low productivity of the machining process. In order to observe the effect of chatter on the turned surface, the surface simulation model based on the surface-shaping system are developed under the ideal condition and the occurrence of the regenerative chatter, and it is compared with experiment of profile. In this study, the experiments were conducted in a CNC lathe without cutting fluid to investigate the phenomenon of the chatter.

경면 다듬질을 위한 자동화 장치 개발 (Development of the Automatic Fine Polishing System)

  • 박균명;장진희;한창수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 추계학술대회 논문집
    • /
    • pp.389-394
    • /
    • 1993
  • Die making process is classified into design,manufacturing,polishing,assembly, and performance test. Die polishing is not a machining process by cutting edge of tool, but it is finishing by relative cutting movement under the surface contact between grinding particles and workpiece, and this process comprised 30~40% of total manufacturing hours. However, die polishing process is still performed by the skilled workers. Now a days, it is very difficult to secure skilled workers due to the hardworking environment and this situation will be getting worse in the future which has great difficulty of dies and molds industries.This process has the common problem on the elimination of tedious manual polishing among the tool making industries. Therefore this study is aimed at the development of an automatic polishing attachment which could be attached onthe spindle of CNC machine tool and controlled by the NC program data created by CAD/CAM system. As a result, this study will contribute the realization of automatic fine polishing process and improvement of quality level of dies and molds.

  • PDF

SPC 기법에 의한 밀링공구의 파손분석 및 검색

  • 서석환;전치혁;최용종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1992년도 추계학술대회 논문집
    • /
    • pp.47-51
    • /
    • 1992
  • Automatic detection of tool breakage during NC machining is a key issue not only for improving productivity but to implement the unattended manufacturing system. In this paper, we develop a vibration sensor-based tool breakage detection system for NC milling processes. The system obtains the time-domain vibration signal from the sensor attached on the spindle bracket of our CNC machine and declares tool failures through the on-line monitoring schemes. For on-line detection, our approach is to use the PSC(statistical process control) methods being increasingly used for on-line process control. The main thrust of this paper is to propose and compare the performance of SPC methods including : a) X-bar control scheme, b) S control scheme, c)EWMA (exponentially weighted moving average) scheme, and d) AEWMA (adaptive exponentially weighted moving average) scheme. The performance of the control schemes are compared in terms of the type 1 and 2 error calculated from the experiment data.

추정된 절삭력 신호를 이용한 선삭력 제어

  • 허건수;김재옥
    • 한국정밀공학회지
    • /
    • 제17권5호
    • /
    • pp.173-179
    • /
    • 2000
  • While a cutting tool is machining a workpiece at various cutting depth, the feedrate is usually selected based on the maximum depth of cut. Even if this selection can avoid power saturation or tool breakage, it is very conservative compared to the capacity of the machine tools and can reduce the productivity significantly. Many adaptive control techniques that can adjust the feedrate to maintain the constant cutting force have been reported. However, these controllers are not very widely used in manufacturing industry because of the limitations in measuring the cutting force signals. In this paper, turning force control systems based on the estimated cutting force signals are proposed. A synthesized cutting force monitor is introduced to estimate the cutting force as accurately as a dynamometer does. Three control strategies of PI, adaptive and fuzzy logic controllers are applied to investigate the feasibility of utilizing the estimated cutting force fur turning force control. The experimental results demonstrate that the proposed systems can be easily realized in CNC lathe with requiring little additional hardware.

  • PDF

OPC를 이용한 공작 기계 감시 시스템의 개발 (Development of Machine Tool Monitoring System Using OPC)

  • 태현철;정영훈;조동우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.564-567
    • /
    • 2005
  • For the application of monitoring system of the machine tool to industry, the requirements such as high reliability and low cost need to be satisfied. In this study, a reliable but inexpensive monitoring method for machine tool is introduced. To improve the monitoring reliability, several kinds of information related to machining and operation are selected; real-time video clip from USB camera, operation data and signal from CNC and feed motor torque. Especially, to improve the quality of real-time video clip, a camera housing is developed, it can significantly reduce the vibration effect and prevent from coolant and chip. The collected information are transferred to the monitoring terminals in remote sites using OPC and TCP/IP protocol over Ethernet, which give us convenience of development and interoperability.

  • PDF

실시간 곡면 가공에 관한 제어 알고리즘 및 하드웨어 연구 (Realtime control algorithm and hardware for machining curved surfaces)

  • 정승권;권욱현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1320-1323
    • /
    • 1996
  • This paper describes an interpolation method for a parametric surface. A parametric surface is approximated to triangular mesh surfaces and then the basic paths are achieved. As the generated path is a series of linear segments, this algorithm can be easily adapted to general NC controllers. The generated paths have minimal transfer length and are gouge-free within the approximation tolerance. The problems, induced when the paths are represented by linear segments, are overcome without making any path deviation by this algorithm. This algorithm saves machining time by eliminating overdetermined tool paths and keeping the desired average feedrate, which improve productivity and lead to lower production costs.

  • PDF