• Title/Summary/Keyword: CN ratio

Search Result 115, Processing Time 0.028 seconds

A Study on the Hydrocarbon Dew Point Prediction by the Compositions of the Fuel Gas Mixtures (연료용 혼합가스 조성에 따른 탄화수소 이슬점 예측)

  • Kim, Young-Gu;Choi, Seul-Gi;Ahn, Jung-Jin;Lee, Chang-Eon
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.3
    • /
    • pp.44-48
    • /
    • 2015
  • The equations of hydrocarbon dew points(DT) of the fuel gas mixtures have been derived using the multiple regression analysis. In QSDR(Quantitative Structure Dew-point Relationship), the principal descriptors are CN(average carbon number) and BI(the ratio of the branched isomers). QSDRs studied by changing the pressures of the fuel gas mixtures in the range of 100 kPa ~ 500 kPa are as follows; $$DT(^{\circ}C)=-683.1+1224.98CN-898.01CN^2+308.58CN^3-49.56CN^4+3.02CN^5-12.42BI$$ (at 100 kPa, $$R_{adj}{^2}=0.99$$) (1) $$DT(^{\circ}C)=-745.2+1351.66CN-978.1CN^2+332.7CN^3-52.96CN^4+3.20CN^5-12.84BI$$ (at 200 kPa, $$R_{adj}{^2}=0.99$$) (2) $$DT(^{\circ}C)=-795.4+1457.1CN-1051.1CN^2+357.53CN^3-57.07CN^4+3.46CN^5-13.10BI$$ (at 300 kPa, $$R_{adj}{^2}=0.99$$) (3) $$DT(^{\circ}C)=-868.1+1608.4CN-1156.0CN^2+393.38CN^3-63.06CN^4+3.85CN^5-13.39BI$$ (at 500 kPa, $$R_{adj}{^2}=0.99$$) (4) As the average carbon numbers in the mixed fuel being reduced or the ratio of the branched isomers having a boiling point lower increase, The hydrocarbon dew point becomes lower, The differences between the hydrocarbon-dew points determined by the multiple regression and those calculated by the commercial program, VMGSim are negligible.

CN AND CH BAND STRENGTH VARIATIONS IN M71 GIANTS

  • LEE SANG-GAK
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.23-31
    • /
    • 2005
  • CN and CH band strengths for fourteen bright giants in the globular cluster M71 have been measured from archival spectra obtained with the Multiple Mirror Telescope. Adding the collected. data from the literature we confirm a bimodality of CN distribution on the red giant branch and the honzontal branch, and CN-CH anti-correlations on the lower giant branch and horizontal branch. However a CN-CH anti-correlation on the upper red giant branch is not quite clear as those of other branches. The small number If statistics could not be excluded as a possible cause. To confirm this, a greater number of sample stars are needed. We also confirm that the ratio of CN-strong to CN-weak stars is quite different from that in 47 Tuc, although the anti-correlation between CN and CH bands, the bimodality of the CN distribution, and the spatial distribution of CN stars in M71 are found to be similar to those III 47 Tuc.

Chemical Oxidation of Cu - and CN - contained Wastewater (Cu - CN 함유 폐수의 화학적 산화)

  • Yoo, Kun-Woo;Seo, Hyung-Joon
    • Clean Technology
    • /
    • v.5 no.1
    • /
    • pp.20-29
    • /
    • 1999
  • In the treatment of Cu - and CN - contained wastewater by using Fenton oxidation-flocculation-precipitation, the optimal removal efficiencies of the cyanide and copper were investigated according to pH, reaction time, the molar ratio of cyanide and hydrogen peroxide and the mass ratio of ferrous sulfate and hydrogen peroxide for Fenton oxidation, and pH for hydroxide precipitation, respectively. As a result, the $CN^-$ removal efficiency in our experimental wastewater by the Fenton oxidation was 81.2%~99% at its optimal conditions of pH ranging from 3 to 5 and reaction time of 30 minutes. And the optimal dosage of hydrogen peroxide and ferrous sulfate was 214, $428mg/{\ell}$, 107, $161mg/{\ell}$, 214, $214mg/{\ell}$ and 520, $500mg/{\ell}$, respectively when the molar ratio of $Cu^{2+}$:CN is 2:1, 1:1, 1:2, 1:10, and was 900, $1050mg/{\ell}$ when the molar ratio of $Cu^+$: CN is 1:10. When the copper was precipitated by sodium hydroxide after Fenton oxidation, the copper removal efficiency in the wastewater at pH 7 was 98.92%, 98.52%, 92.46%, 90.6% and 95%, respectively.

  • PDF

Amorphous Silicon Carbon Nitride Films Grown by the Pulsed Laser Deposition of a SiC-$Si_3N_4$ Mixed Target

  • Park, Nae-Man;Kim, Sang-Hyeob;Sung, Gun-Yong
    • ETRI Journal
    • /
    • v.26 no.3
    • /
    • pp.257-261
    • /
    • 2004
  • We grew amorphous SiCN films by pulsed laser deposition using mixed targets. The targets were fabricated by compacting a mixture of SiC and $SiC-{Si_3}{N_4}$ powders. We controlled the film stoichiometry by varying the mixing ratio of the target and the target-to-substrate distance. The mixing ratio of the target had a dominant effect on the film composition. We consider the structures of the SiCN films deposited using 30~70 wt.% SiC in the target to be an intermediate phase of SiC and $SiN_x$. This provides the possibility of growing homogeneous SiCN films with a mixed target at a moderate target-to-substrate distance.

  • PDF

Ti(CN) coating on aluminum alloy formed by MO-PACVD (Al 합금에 MO-PACVD법으로 증착시킨 Ti(CN) 코팅 층의 물성에 관한 연구)

  • ;;J. Woehle;K.-T. Rie
    • Journal of the Korean institute of surface engineering
    • /
    • v.33 no.1
    • /
    • pp.38-47
    • /
    • 2000
  • A Ti(CN) layer was formed on aluminum alloy by using diethylamino titanium, hydrogen and nitrogen with the pulsed DC PACVD process. Effect of process parameters such as precursor evaporation temperature, duty ratio, frequency, voltage, $H_2$/$N_2$gas ratio on the properties of Ti(CN) layer were investigated. The layer thus obtained had high hardness and low friction coefficient. Detailed results on the hardness, surface morphology, XRD, WDS analysis, wear test and scratch test of this layer are presented.

  • PDF

CHEMICAL DIAGNOSTICS OF THE MASSIVE STAR CLUSTER-FORMING CLOUD G33.92+0.11. III. 13CN AND DCN

  • Minh, Young Chol;Liu, Hauyu Baobab
    • Journal of The Korean Astronomical Society
    • /
    • v.52 no.3
    • /
    • pp.83-88
    • /
    • 2019
  • Using ALMA observations of the $^{13}CN$ and DCN lines in the massive star-forming region G33.92+0.11A, we investigate the CN/HCN abundance ratio, which serves as a tracer of photodissociation chemistry, over the whole observed region. Even considering the uncertainties in calculating the abundance ratio, we find high ratios (${\gg}1$) in large parts of the source, especially in the outer regions of star-forming clumps A1, A2, and A5. Regions with high CN/HCN ratios coincide with the inflows of accreted gas suggested by Liu et al. (2015). We conclude that we found strong evidence for interaction between the dense gas clumps and the accreted ambient gas which may have sequentially triggered the star formation in these clumps.

Application of Ferrate (VI) for Selective Removal of Cyanide from Plated Wastewater (도금폐수 중 시안(CN)의 선택적 제거를 위한 Ferrate (VI) 적용)

  • Yang, Seung-Hyun;Kim, Younghee
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.168-173
    • /
    • 2021
  • The treatment of plated wastewater is subject to various and complex processes depending on the pH, heavy metal, and cyanide content of the wastewater. Alkali chlorine treatment using NaOCl is commonly used for cyanide treatment. However, if ammonia and cyanide are present simultaneously, NaOCl is consumed excessively to treat ammonia. To solve this problem, this study investigated 1) the consumption of NaOCl according to ammonia concentration in the alkaline chlorine method and 2) whether ferrate (VI) could selectively treat the cyanide. Experiments using simulated wastewater showed that the higher the ammonia concentration, the lower the cyanide removal rate, and the linear increase in NaOCl consumption according to the ammonia concentration. Removal of cyanide using ferrate (VI) confirmed the removal of cyanide regardless of ammonia concentration. Moreover, the removal rate of ammonia was low, so it was confirmed that the ferrate (VI) selectively eliminated the cyanide. The cyanide removal efficiency of ferrate (VI) was higher with lower pH and showed more than 99% regardless of the ferrate (VI) injection amount. The actual application to plated wastewater showed a high removal ratio of over 99% when the input mole ratio of ferrate (VI) and cyanide was 1:1, consistent with the molarity of the stoichiometry reaction method, which selectively removes cyanide from actual wastewater containing ammonia and other pollutants like the result of simulated wastewater.

Solid-State Ball-Mill Synthesis of Prussian Blue from Fe(II) and Cyanide Ions and the Influence of Reactants Ratio on the Products at Room Temperature

  • Youngjin Jeon
    • Journal of the Korean Chemical Society
    • /
    • v.68 no.2
    • /
    • pp.82-86
    • /
    • 2024
  • This paper presents the solid-state synthesis of insoluble Prussian blue (Fe4[Fe(CN)6]3·xH2O, PB) in a ball mill, utilizing the fundamental components of PB. Solid-state synthesis offers several advantages, such as being solvent-free, quantitative, and easily scalable for industrial production. Traditionally, the solid-state synthesis of PB has been limited to the reaction between iron(II/III) ions and hexacyanoferrate(II/III) complex ions, essentially an extension of the solution-based coprecipitation method to solid-state reaction. Taking a bottom-up approach, a reaction is designed where the reactants consist of the basic building blocks of PB: Fe2+ ions and CN- ions. The reaction, with a molar ratio of Fe2+ and CN- corresponding to 1:2.8, yields PB, while a ratio of 1:6.6 results in a mixture of potassium hexacyanoferrate(II) (K4Fe(CN)6), potassium chloride (KCl), and potassium cyanide (KCN). This synthetic approach holds promise for environmentally friendly methods to synthesize multimetallic PB with maximum entropy in nearly quantitative yield.

Effect of nitrogen content in media on yield of Pleurotus ostreatus in bag culture (느타리 봉지재배시 배지질소함량이 수량에 미치는 영향)

  • Lee, An-Soo;Lee, Jae-Hong;Won, Heon-Seop;Hwang, Se-Jeong;Lee, Kwang-Jae;Bang, Kyeong-Rin;Kim, Ki-Sun;Mo, Young-Moon
    • Journal of Mushroom
    • /
    • v.19 no.1
    • /
    • pp.71-75
    • /
    • 2021
  • We analyzed the relationship between the main chemical properties (pH, total nitrogen content, total carbon content, and CN ratio) of sterilized medium and mushroom yields in 1 kg bag culture of Pleurotus ostreatus. The mushroom yields appeared to be highly correlated with the pH, total nitrogen content, and CN ratio, and were the highest under a total nitrogen content of 2.0-2.2% and a the CN ratio of 20-22.5. However, of the three parameters, total nitrogen content showed the highest correlation with the mushroom yield. The coefficient of determination(r2) between the total nitrogen content and the sum of the yield was 0.931, while that of the pH and CN ratio was relatively low. The nitrogen content of the medium was the most important factor in determining the yield of oyster mushrooms.