• Title/Summary/Keyword: CMP slurry

Search Result 365, Processing Time 0.021 seconds

Design of Pad Groove in CMP using CFD (CFD를 이용한 CMP의 Pad Groove 형상 설계 연구)

  • Choi, Chi-Woong;Lee, Do-hyung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.4 s.21
    • /
    • pp.21-28
    • /
    • 2003
  • CMP (Chemical Mechanical Polishing) is to achieve adequate local and global planarization for future sub-micrometer VLSI requirements. In designing CMP, numerical computation is quite helpful in terms of reducing the amount of experimental works. Stresses on pad, concentration of particles and particle tracking are studied for design. In this research, the optimization of grooved pad shape of CMP is performed through numerical investigation of slurry flow in CMP process. The result indicates that the combination of sinusoidal groove and skewed pad is the most optimal shape among the twenty candidates. Useful information can be obtained in velocity, pressure, stress, concentration of particles and particles trajectories, etc.

A Study on Machining Characteristic Comparison of Blanket Wafer(TEOS) by CMP and Spin Etching (CMP와 Spin Etching에 의한 Blanket Wafer(TEOS) 가공 특성 비교에 관한 연구)

  • 김도윤;정해도;이은상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1068-1071
    • /
    • 2001
  • Recently, the minimum line width shows a tendancy to decrease and the multi-level to increase in semiconductor. Therefore, a planarization technique is needed, which chemical polishing(CMP) is considered as one of the most important process. CMP accomplishes a high polishing performance and a global planarization of high quality. But there are several defects in CMP such as microscratches, abrasive contaminations, and non-uniformity of polished wafer edges. Spin Etching can improve the defects of CMP. It uses abrasive-free chemical solution instead of slurry. Wafer rotates and chemical solution is simultaneously dispensed on a whole surface of the wafer. Thereby chemical reaction is occurred on the surface of wafer, material is removed. On this study, TEOS film is removed by CMP and Spin Etching, the results are estimated at a viewpoint of material removal rate(MRR) and within wafer non-uniformity(WIWNU).

  • PDF

Effects of Friction Energy on Polishing Results in CMP Process (CMP 공정에서 마찰에너지가 연마결과에 미치는 영향)

  • Lee, Hyun-Seop;Park, Boum-Young;Kim, Goo-Youn;Kim, Hyoung-Jae;Seo, Heon-Deok;Jeong, Hae-Do
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1807-1812
    • /
    • 2004
  • The application of chemical mechanical polishing(CMP) has a long history. Recently, CMP has been used in the planarization of the interlayer dielectric(ILD) and metal used to form the multilevel interconnections between each layers. Therefore, much research has been conducted to understand the basic mechanism of the CMP process. CMP performed by the down force and the relative speed between pad and wafer with slurry is typical tribo-system. In general, studies have indicated that removal rate is relative to energy. Accordingly, in this study, CMP results will be analyzed by a viewpoint of the friction energy using friction force measurement. The results show that energy would not constant in the same removal rate conditions

Improvement of CMP and Cleaning Process of Large Size OLED LTPS Thin Film Using Oscar Type Polisher (Oscar형 연마기를 이용한 대면적 OLED용 LTPS 박막의 CMP 처리 및 세정 공정 개선)

  • Shim, Gowoon;Lee, Hyuntaek;Song, Jongkook
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.71-76
    • /
    • 2022
  • We evaluated and developed a 6th generation large-size polisher in the type of face-up and Oscar. We removed the hillocks of the low temperature poly-silicon (LTPS) thin film with this polisher. The surface roughness of LTPS was lowered from 7.9 nm to 0.6 nm after CMP(chemical mechanical polishing). The thickness of the LTPS is measured through reflectance in real time during polishing, and the polishing process is completed according to this thickness. The within glass non-uniformity (WIGNU) was 6.2% and the glass-to-glass non-uniformity (GTGNU) was 2.5%, targeting the LTPS thickness of 400Å. In addition, the residual slurry after the CMP process was removed through the Core Flow PVA Brush and alkaline chemical.

Effect of Abrasive Particles on Frictional Force and Abrasion in Chemical Mechanical Polishing(CMP) (CMP 연마입자의 마찰력과 연마율에 관한 영향)

  • Kim, Goo-Youn;Kim, Hyoung-Jae;Park, Boum-Young;Lee, Hyun-Seop;Park, Ki-Hyun;Jeong, Hae-Do
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.10
    • /
    • pp.1049-1055
    • /
    • 2004
  • Chemical Mechanical Polishing (CMP) is referred to as a three body tribological system, because it includes two solids in relative motion and the CMP slurry. On the assumption that the abrasives between the pad and the wafer could be a major reason not only for the friction force but also for material removal during polishing, the friction force generated during CMP process was investigated with the change of abrasive size and concentration of CMP slurry. The threshold point of average coefficient of friction (COF) with increase in abrasives concentration during interlayer dielectric (ILD) CMP was found experimentally and verified mathematically based on contact mechanics. The predictable models, Mode I (wafer is in contact with abrasives and pad) and Mode II (wafer is in contact with abrasives only), were proposed and used to explain the threshold point. The average COF value increased in the low abrasives concentration region which might be explained by Mode I. In contrast the average COF value decreased at high abrasives concentration which might be regarded to as Mode II. The threshold point observed seemed to be due to the transition from Mode I to Mode II. The tendency of threshold point with the variation of abrasive size was studied. The increase of particle radius could cause contact status to reach transition area faster. The correlation between COF and material removal rate was also investigated from the tribological and energetic point of view. Due to the energy loss by vibration of polishing equipment, COF value is not proportional to the material removal rate in this experiment.

non-polar 6H-SiC wafer의 CMP 가공에 대한 연구

  • Lee, Tae-U;Sim, Byeong-Cheol;Lee, Won-Jae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.141-141
    • /
    • 2009
  • Blue light-emitting diodes (LEDs), violet laser diodes 같은 광전소자들은 질화물 c-plane 기판위에 소자로 응용되어 이미 상품화 되어 왔다. 그러나 2족-질화물 재료들은 wurtzite 구조를 가지므로 c-plane에 평행한 자연적인 극성을 띌 뿐만 아니라 결정 내부 stress로 인한 압전현상 또한 나타나 큰 내부 전기장을 형성하게 된다. 이렇게 생성된 내부 전기장은 전자와 홀의 재결합 효율을 감소시키고 소자 응용 시 red-shift의 원인이 되곤 한다. 따라서 최근 들어 m-plane(1-100), a-plane (11-20)같은 무극성을 뛰는 기판 위에 소자를 만드는 방법이 각광을 받고 있는 추세다. 그러나 무극성 기판을 소자에 응용 시 Chemical Mechanical Planarization (CMP)에 의한 가공은 반도체 기판으로써 이용하기 위한 필수 불가결의 공정이다. c면(0001) SiC wafer에 대한 연구는 현재 많이 발표가 되어 있으나 무극성면 SiC wafer에 대한 CMP 공정에 대한 연구사례는 없는 실정이다. 본 연구에서는 C면 (0001)으로 성장된 잉곳을 a면(11-20)과 m(1-100)면으로 절단 후, slurry type (KOH-based colloidal silica slurry, NaOCl), 산화제, 연마제등을 변화하여 CMP 공정을 거침으로서 일어나는 기계 화학적 가공 양상에 대하여 알아보았다. 그 후 표면 형상 분석 하기위해 Atomic Force Microscope(AFM)을 사용하였고, 표면 스크레치를 SEM을 이용해서 알아보았다.

  • PDF

Chemical Mechanical Polishing of Aluminum Thin Films (알루미늄 박막의 화학기계적연마 가공에 관한 연구)

  • Cho, Woong;Ahn, Yoo-Min;Baek, Chang-Wook;Kim, Yong-Kweon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.2
    • /
    • pp.49-57
    • /
    • 2002
  • The effect of mechanical parameters on chemical mechanical polishing (CMP) of blanket and patterned aluminum thin films are investigated. CMP process experiments are conducted using the soft pad and the slurry mainly composed of acid solution and A1$_2$O$_3$ abrasive. The result for the blanket film showed that as the concentration of abrasive in slurry is increased, the surface roughness gets worse but the waviness gets better. The planarity of the patterned Al films is slowly improved by CMP when the width of and gap between the patterns are relatively small. It is tried to find the optimized CMP process conditions by that the patterned Al thin film can be planarized with fine surface. The most satisfiable film surface is obtained when the applied pressure is low (10kPa) and the abrasive concentration is relatively high (5wt%).

The Effect of Pad Groove Dimension on Polishing Performance in CMP (CMP에서 패드 그루브의 채수가 연마특성에 미치는 영향)

  • Park, Ki-Hyun;Kim, Hyung-Jae;Jeong, Young-Seok;Jeong, Hae-Do;Park, Jae-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1308-1311
    • /
    • 2004
  • It is very important that get polishing characteristic that to be stable that accomplish planarization of high efficiency in chemical mechanical polishing, and there is repeatability Groove of pad causes much effects in flow of slurry among various factors that influence in polishing characteristic, is expected to cause change of lubrication state and polishing characteristic in contact between wafer and pad. Therefore, divided factors of pad groove by groove pattern, groove profile, groove dimensions. This research wishes to study effect that dimension of pad groove gets in polishing performance. When changed dimension (width, depth, pitch of groove) of groove, measured change of removal rate and friction force. According as groove dimension changes, could confirm that removal rate and friction force change. While result of this experiment studies effect of pad groove in CMP, it is expected to become small help.

  • PDF

A Study on the Within Wafer Non-uniformity of Oxide Film in CMP (CMP 패드 강성에 따른 산화막 불균일성(WIWNU)에 관한 연구)

  • Park, Ki-Hyun;Jung, Jae-Woo;Park, Boum-Young;Seo, Heon-Deok;Lee, Hyun-Seop;Jeong, Hae-Do
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.6
    • /
    • pp.521-526
    • /
    • 2005
  • Within wafer non-uniformity(WIWNU) improves as the stiffness of pad decrease. We designed the pad groove to study of pad stiffness on WIWNU in Chemical mechanical polishing(CMP) and measured the pad stiffness according to groove width. The groove influences effective pad stiffness although original mechanical properties of pad are unchanged by grooving. Also, it affects the flow of slurry that has an effect on the lubrication regime and polishing results. An Increase of the apparent contact area of pad by groove width results in decrease of effective pad stiffness. WIWNU and profile of removal tate improved as effective pad stiffness decreased. Because grooving the pad reduce its effective stiffness and it makes slurry distribution to be uniform. Futhermore, it ensures that pad conforms to wafer-scale flatness variability. By grooving the top pad, it is possible to reduce its stiffness and hence reduce WIWNU and edge effect.